Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Chem Biol Interact ; 381: 110566, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37257577

RESUMEN

The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter). Further, breast cancer, cardiomyoblast (H9c2), and macrophage (RAW 264.7) cell lines were used to establish the in vitro combination effect of NARI-29 and Dox. To develop the cardiotoxicity model, mice were given Dox 2.5 mg/kg (i.p.), biweekly. The effect of AKR1B1 inhibition using NARI-29 on molecular and cardiac functional changes was measured using echocardiography, fluorescence-imaging, ELISA, immunoblotting, flowcytometry, High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD) and cytokine-bead array methods. The bioinformatics data suggested that a high expression of AKR1B1 is associated with significantly low survival of breast cancer patients undergoing chemotherapy; hence, it could be a target for chemo-sensitization and chemo-prevention. Further, in vitro studies showed that AKR1B1 inhibition with NARI-29 has increased the accumulation and sensitized Dox to breast cancer cell lines. However, treatment with NARI-29 has alleviated the Dox-induced toxicity to cardiomyocytes and decreased the secretion of inflammatory cytokines from RAW 264.7 cells. In vivo studies revealed that the NARI-29 (25 and 50 mg/kg) has prevented the functional, histological, biochemical, and molecular alterations induced by Dox treatment. Moreover, we have shown that NARI-29 has prevented the carbonyl reduction of Dox to Doxol in the mouse heart, which reduced the calcium overload, prevented phosphorylation of CaMKII, and reduced the expression of MuRF1 to protect from cardiac injury and apoptosis. Hence in conclusion, AKR1B1 inhibitor NARI-29 could be used as an adjuvant therapeutic agent with Dox to prevent cardiotoxicity and synergize anti-breast cancer activity.


Asunto(s)
Aldehído Reductasa , Cardiotoxicidad , Rodanina , Animales , Ratones , Aldehído Reductasa/metabolismo , Apoptosis , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Rodanina/análogos & derivados , Rodanina/farmacología
2.
Eur J Pharm Biopharm ; 186: 43-54, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940886

RESUMEN

Long-term oral tofacitinib (TOF) administration has been linked to serious side effects majorly immunological suppression. The aim of this work was to enhance the therapeutic efficacy of TOF by chondroitin sulphate (CS) coated proglycosomes through the anchoring of high-affinity CS to CD44 receptors on immune cells in the inflammatory region. The CS was coated onto the TOF-loaded proglycosomes (CS-TOF-PG) formulations and they were evaluated for in vitro drug release, ex vivo (permeation, dermatokinetics) studies. In vivo efficacy studies were carried out in Freund's complete adjuvant (CFA) induced arthritis model. The optimized CS-TOF-PG showed particle sizes of 181.13 ± 7.21 nm with an entrapment efficiency of 78.85 ± 3.65 %. Ex-vivo studies of CS-TOF-PG gel exhibited 1.5-fold high flux and 1.4-fold dermal retention compared to FD-gel. The efficacy study revealed that CS-TOF-PG showed a significant (P < 0.001) reduction in inflammation in arthritic rat paws compared to the TOF oral and FD gel. The current study ensured that the CS-TOF-PG topical gel system would provide a safe and effective formulation for localization and site-specific delivery of TOF at the RA site and overcome the adverse effects associated with the TOF.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Animales , Sulfatos de Condroitina , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Piperidinas
3.
J Ethnopharmacol ; 301: 115765, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36195303

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mesua Assamica (King & prain) Kosterm. (MA) is an evergreen endemic medicinal tree available in Assam in India and other parts of south Asia. The bark of the plant is traditionally used for ant-malarial activity and treating fevers. It was reported to have anti-oxidant, anti-inflammatory, anti-diabetic, anti-cancer and anti-malarial properties, but no research findings have been reported about its protective activity on intestinal inflammatory disorders like ulcerative colitis (UC) yet. AIM OF THE STUDY: The aim of the current study is to evaluate the anti-ulcerative property of ethanolic extract of MA (MAE) in-vitro on GloResponse™ NF-кB-RE-luc2P HEK 293 cells for its anti-oxidant and anti-inflammatory activities and in-vivo chronic restraint stress aggravated dextran sodium sulfate (DSS)-induced UC model. MATERIALS AND METHODS: The chemical constituents of MAE were identified by LC-MS/MS. The in-vitro effects of MAE on GloResponse™ NF-кB-RE-luc2P HEK 293 cells stimulated with TNF-α 30 ng/ml were investigated for its potential therapeutic effects. Parameters such as body weights, behavioural, colonoscopy, colon lengths and spleen weights were measured and recorded in chronic restraint stress aggravated DSS-induced UC model in C57BL/6 mice. Histological, cytokines and immunoblotting analysis in the colon tissues were determined to prove its anti-inflammatory and anti-oxidant activities. RESULTS: MAE poses significant anti-oxidant and anti-inflammatory activity in-vitro in GloResponse™ NF-кB-RE-luc2P HEK 293 cells evidenced by DCFDA and immunoflourescence assay. MAE treatment at 100 mg/kg and 200 mg/kg for 14 consecutive days has reduced Disease activity Index (DAI), splenomegaly and improved the shortened colon length and sucrose preference in mice. MAE treatment has increased the levels of anti-oxidants like GSH and reduced the levels of MDA, MPO and nitrite levels in colon tissues. Moreover, MAE has ameliorated neutrophil accumulation, mucosal and submucosal inflammation and crypt density evidenced by histopathology. Furthermore, MAE treatment significantly reduced the increased pro-inflammatory cytokines like IL-6, IL-1ß and TNF-α. we found from immunoblotting that there is a concomitant decrease in protein expression of NF-κB, STAT3 signalling cascades and phosphorylation of IKBα with an increase in Nrf2, SOD2, HO-1 and SIRT1 in colon tissues. In addition, we have performed molecular docking studies confirming that phytochemicals present in the MAE have a stronger binding ability and druggability to the NF-κB, Nrf2 and SIRT1 proteins. CONCLUSIONS: MAE exhibited significant anti-colitis activity on chronic restraint stress aggravated DSS-induced ulcerative colitis via regulating NF-κB/STAT3 and HO-1/Nrf2/SIRT1 signaling pathways.


Asunto(s)
Colitis Ulcerosa , FN-kappa B , Animales , Humanos , Ratones , Antiinflamatorios , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Cromatografía Liquida , Colitis Ulcerosa/inducido químicamente , Colon , Citocinas/metabolismo , Sulfato de Dextran , Células HEK293 , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Corteza de la Planta/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/metabolismo
4.
Phytomedicine ; 106: 154415, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36070663

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE: POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase  enzyme. Several studies reported that POH could inhibit the phosphorylation of  NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition.  Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS: Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS: The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1ß and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION: These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.


Asunto(s)
Colitis Ulcerosa , Aceites Volátiles , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Citocinas , Sulfato de Dextran/efectos adversos , Dopamina , Eosina Amarillenta-(YS)/efectos adversos , Farnesiltransferasa/metabolismo , Farnesiltransferasa/farmacología , Farnesiltransferasa/uso terapéutico , Hidrocortisona/farmacología , Interleucina-6/farmacología , Ratones , Ratones Endogámicos C57BL , Monoterpenos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Aceites Volátiles/farmacología , Serotonina/farmacología , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Phytomedicine ; 97: 153926, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35030388

RESUMEN

BACKGROUND: Rheumatoid arthritis is a chronic and idiopathic autoimmune disorder. Perillyl alcohol (POH) is a monoterpene which can be extracted from widely available essential oils and is known for its strong anti-inflammatory and anti-oxidant properties. HYPOTHESIS/PURPOSE: Recent studies have been proven that inhibitors of farnesyltransferase enzyme showed significant anti-arthritic activity. POH is one such natural molecule having anti-inflammatory and anti-oxidant properties by inhibiting farnesyltransferase enzyme which further down regulates NF-κB and Nrf2 via Ras/Raf/MAPK pathway. Also, the effect of POH against rheumatoid arthritis is not known yet. Hence, the present research was intended to assess the anti-arthritic potential of POH in-vitro and in-vivo. METHODS: The in-vitro effects of POH on RAW 264.7 cells stimulated with LPS 1 µg/ml were investigated to its potential therapeutic effects. CFA 100 µl was intradermally administered to rats for the induction of arthritis. POH 100 mg/kg and 200 mg/kg administered topically from day 1 to day 28. Paw volumes measured, radiography analysis, anti-oxidant status, Gene expression studies, western blot analysis and histological analysis were performed to check the effects of POH. RESULTS: Our in-vitro findings suggested that POH inhibits inflammation by suppressing reactive oxygen species (ROS), NF-кB and Nrf2 signaling axis. Besides this, POH also rescinded the nitrate levels, pro-inflammatory cytokine levels like IL-1ß, IL-6 and TNF-α also PGE2 and COX-2 levels induced by LPS in murine macrophages. Additionally, our in-vivo results revealed that POH conscientiously alleviated CFA induced inflammation by restoring arthritis index, body weight, nitrosative, lipid peroxidation assays. Macroscopically through measuring paw volumes and X-ray, it was evidenced that POH has decreased inflammation and bone erosion. Not only in-vitro but also in-vivo, POH has abridged cytokine levels IL-1ß, IL-6, and TNF-α. Histopathological evaluation presented POH treatment alleviated joint inflammation, pannus formation, and bone erosion significantly. Moreover, POH suppressed the protein expression of NF-кB, COX-2, iNOS and improved Nrf2, and SOD2 levels in paw tissues estimated by western blotting. CONCLUSION: POH was effective in ameliorating LPS stimulation mediated oxidative stress and pro-inflammatory cytokines in RAW 264.7 cells in-vitro and FCA induced arthritis in rats in-vivo through its anti-inflammatory effects via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways..


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Citocinas/metabolismo , Inflamación , Proteína 1 Asociada A ECH Tipo Kelch , Lipopolisacáridos , Ratones , Modelos Teóricos , Monoterpenos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Ratas , Transducción de Señal , Receptor Toll-Like 4
6.
J Ethnopharmacol ; 282: 114600, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487845

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cleome species in particular (C. gynandra Linn, C. viscosa Linn, C. rutidosperma DC, C. felina Linn.), commonly known as spider flowers, belong to the genus of flowering plants in Cleomaceae family. Found primarily in the African countries (Kenya, Tanzania, Egypt, South Africa, and Nigeria), Asian countries (India and Afghanistan), European countries (Italy), and also in other countries like Brazil and Austria. These plants are commonly cultivated as a vegetable crop for their nutritional benefits, and the leaves are widely consumed for their health-promoting effects. The different parts of the plants, such as leaves, seeds, flowers, and roots, are used to treat acute and chronic inflammatory disorders, hepatotoxicity, malaria, fungal diseases, and cancer. AIM OF THE STUDY: Detailed investigations in underlining the molecular mechanisms and their wide variety of effects in treating various diseases remain ambiguous. The review focuses on an in-depth discussion of studies targeting phytochemistry and polypharmacology. Thus, the review aims to recapitulate the therapeutic potential of the components of Cleome involved in the treatment of a wide variety of ailments from ancient times were collected and presented along with strategies aiming for future studies. MATERIALS AND METHODS: The information provided is collected from several scientific databases (PubMed, Elsevier, ScienceDirect) and traditional medicine books, and other professional websites. RESULTS AND CONCLUSION: Investigations and current evidence revealed that the different chemical constituents present in cleome species possess various health-promoting effects along with the aerial parts showing promising traditional uses in traditional healing and culinary. An explorative survey in the current review highlights the traditional healing effects along with a broad scope of studies that can be performed in the future.


Asunto(s)
Cleome , Etnofarmacología , Etnofarmacología/métodos , Etnofarmacología/tendencias , Alimentos Funcionales , Humanos , Medicina Tradicional/métodos , Medicina Tradicional/tendencias , Fitoterapia/métodos , Plantas Medicinales
7.
J Ethnopharmacol ; 279: 114385, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34217795

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum alatum (ZA) Roxb (family: Rutaceae) plant has been traditionally used for multiple indications by local healers among different communities of South Asian countries mainly in India and Bangladesh. The extracts of ZA have reported strong anti-inflammatory and anti-oxidant activities, but no scientific report is available on its efficacy in intestinal inflammatory disorders like ulcerative colitis. AIM OF THE STUDY: The overall objective of our study was to evaluate the anti-inflammatory potency of hydro-ethanolic extract of Zanthoxylum alatum seed (ZAHA) using both in-vitro NF-κB-luciferase translocation assay and in-vivo stress aggravated dextran sodium sulfate (DSS)-induced ulcerative colitis model. MATERIALS AND METHODS: The in-vitro anti-inflammatory effect of ZAHA extract was evaluated by luciferase assay in HEK293 cells. Parameters such as body weights, behavioural, colonoscopy, colon lengths and spleen weights were measured and recorded in stress aggravated DSS-induced colitis model in C57BL/6 mice. Biochemical, histological and immunoblot analysis in the colon tissues were determined to prove its anti-inflammatory and anti-oxidant activities. Characterization of the extract was done by LC-MS/MS study. RESULTS: Initial in vitro NF-κB-luciferase translocation assay showed that the hydroalcoholic extract of ZA (ZAHA) showed potent inhibitory activity for NF-κB translocation by TNF-α stimulation and hence this particular extract was further evaluated in stress aggravated DSS-induced ulcerative colitis model in C57BL/6 mice. Treatment of ZAHA for two weeks at a dose of 200 mg/kg significantly ameliorated the stress aggravated DSS-induced colitis in mice. Histological alterations, infiltration of inflammatory cells, and the levels of IL-1ß, IL-6, TNF-α in colon tissue and serum samples were significantly decreased in ZAHA treatment groups compared to the stress aggravated DSS induced colitis animals. Moreover, the protein expressions of p-NF-κB, p-IκBα, p-STAT3, COX-2, and TNF-α were significantly reduced in colon tissues of ZAHA treated groups and also increased anti-oxidant markers like SOD-1, Nrf2 significantly when compared with disease control group. Characterization of the extract further by LC-MS/MS revealed the presence of several active compounds which could be responsible for its anti-inflammatory activity. CONCLUSIONS: Thus from the above findings it can be concluded that ZAHA ameliorates stress aggravated DSS-induced ulcerative colitis due to its anti-inflammatory and anti-oxidant activity.


Asunto(s)
Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/complicaciones , Extractos Vegetales/farmacología , Semillas/química , Estrés Fisiológico/efectos de los fármacos , Zanthoxylum/química , Animales , Conducta Animal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sulfato de Dextran/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Extractos Vegetales/química , Transducción de Señal , Pruebas de Toxicidad
8.
Life Sci ; 271: 119155, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548286

RESUMEN

Acute kidney injury (AKI) is a progressive renal complication which significantly affects the patient's life with huge economic burden. Untreated acute kidney injury eventually progresses to a chronic form and end-stage renal disease. Although significant breakthroughs have been made in recent years, there are still no effective pharmacological therapies for the treatment of acute kidney injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response plays a pivotal role in the pathogenesis of acute kidney injury. The expression of TLR4 has been seen in resident renal cells, including podocytes, mesangial cells, tubular epithelial cells and endothelial cells. Activation of TLR4 signaling regulates the transcription of numerous pro-inflammatory cytokines and chemokines, resulting in renal inflammation. Therefore, targeting TLR4 and its downstream effectors could serve as an effective therapeutic intervention to prevent renal inflammation and subsequent kidney damage. For the first time, this review summarizes the literature on acute kidney injury from the perspective of TLR4 from year 2010 to 2020. In the current review, the role of TLR4 signaling pathway in AKI with preclinical evidence is discussed. Furthermore, we have highlighted several compounds of natural and synthetic origin, which have the potential to avert the renal TLR4 signaling in preclinical AKI models and have shown protection against AKI. This scientific review provides new ideas for targeting TLR4 in the treatment of AKI and provides strategies for the drug development against AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Receptor Toll-Like 4/metabolismo , Lesión Renal Aguda/inmunología , Animales , Sistemas de Liberación de Medicamentos/tendencias , Medicamentos Herbarios Chinos/administración & dosificación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Glucocorticoides/administración & dosificación , Humanos , Inhibidores de la Bomba de Protones/administración & dosificación , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/inmunología
9.
Carbohydr Polym ; 212: 252-259, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30832855

RESUMEN

Niclosamide, previously used as an anthelmintic drug is currently being repurposed for its anticancer activity. Niclosamide is a brick like biopharmaceutical classification system (BCS) class II drug with poor aqueous solubility and dissolution consequently leading to low bioavailability. By considering the physicochemical properties and geometry of niclosamide, inclusion complex with cyclodextrin was prepared by freeze drying method and characterized using FT-IR, DSC, PXRD, and 1HNMR. In silico molecular modeling study was performed to study the possible interactions between niclosamide and cyclodextrin. The anticancer activity of niclosamide formulation was evaluated through in vitro cell cytotoxicity study using various cancer cell lines. The potential of niclosamide complex for improvement of the bioavailability was evaluated in male BALB/c mice. In vitro cytotoxicity studies indicated significantly higher cytotoxicity at lower concentrations and the pharmacokinetic studies showed significant improvement in Cmax and Tmax of niclosamide from cyclodextrin complex in comparison to pure niclosamide alone.


Asunto(s)
Antineoplásicos/síntesis química , Ciclodextrinas/síntesis química , Composición de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Niclosamida/síntesis química , Animales , Anticestodos/síntesis química , Anticestodos/metabolismo , Antineoplásicos/metabolismo , Ciclodextrinas/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Niclosamida/metabolismo
10.
Nutrition ; 32(9): 955-64, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27178879

RESUMEN

OBJECTIVE: The aim of the present study was to investigate the skin penetration potential of emu oil and the possibility of enhancing the antiarthritic potential of lipophilic bioactive curcumin, which has poor permeability through biological membranes. METHODS: Solubility and ex vivo skin permeation studies were performed with water, corn oil, and emu oil as a vehicle using curcumin as a model drug. Carrageenan induced inflammation and Freund's complete adjuvant-induced arthritic rat models were used to evaluate enhanced antiinflammatory and antiarthritic effect of curcumin in combination of emu oil via topical route. RESULTS: The skin permeation study resulted in the combination of emu oil with curcumin enhancing the flux 1.84 and 4.25 times through the rat skin compared to corn oil and water, respectively. Results of carrageenan induced rat paw edema model demonstrated that percentage of paw inhibition shown by curcumin-emu oil combination was 1.42-fold more compared to the total effect shown by both groups treated with curcumin aqueous suspension and emu oil per se. In Freund's complete adjuvant-induced arthritic model, the combined treatment was effective in bringing significant changes in the functional, biochemical, histopathologic, and radiologic parameters. Topical application of curcumin-emu oil combination resulted in significant reduced levels of proinflammatory mediators TNF-α, IL-1 ß, and IL-6 (P < 0.05, 0.001, and 0.01, respectively) compared to arthritic animals. CONCLUSION: Topical delivery of curcumin with emu oil holds promise as a noninvasive and efficacious intervention for the treatment of inflammatory arthritis and it assists in further development of a topical formulation of curcumin using emu oil as a vehicle.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis/tratamiento farmacológico , Curcumina/uso terapéutico , Aceites/uso terapéutico , Administración Tópica , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Curcumina/administración & dosificación , Modelos Animales de Enfermedad , Quimioterapia Combinada , Adyuvante de Freund , Masculino , Aceites/administración & dosificación , Ratas , Ratas Sprague-Dawley
11.
Curr Neuropharmacol ; 14(6): 567-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26791479

RESUMEN

Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it`s high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Mitocondrias/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Descubrimiento de Drogas , Glioma/tratamiento farmacológico , Humanos , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Fitoterapia
12.
Chem Biol Interact ; 240: 146-52, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26282489

RESUMEN

There has been a search for new anticancer agents to treat cancer resistance throughout the globe. Salinomycin (SAL), a broad spectrum antibiotic and a coccidiostat has been found to counter tumour resistance and kill cancer stem cells with better efficacy than the existing chemotherapeutic agents; paclitaxel and doxorubicin. This refocused its importance for treatment of human cancers. In this study, we studied the in vitro drug metabolism and pharmacokinetic parameters of SAL. SAL undergoes rapid metabolism in liver microsomes and has a high intrinsic clearance. SAL metabolism is mainly mediated by CYP enzymes; CYP3A4 the major enzyme metabolising SAL. The percent plasma protein binding of SAL in human was significantly lower as compared to mouse and rat plasma. CYP inhibition was carried out by chemical inhibition and recombinant enzyme studies. SAL was found to be a moderate inhibitor of CYP2D6 as well as CYP3A4. As CYP3A4 was the major enzyme responsible for metabolism of SAL, in vivo pharmacokinetic study in rats was done to check the effect of concomitant administration of Ketoconazole (KTC) on SAL pharmacokinetics. KTC, being a selective CYP3A4 inhibitor increased the systemic exposure of SAL significantly to 7-fold in AUC0-α and 3-fold increase in Cmax of SAL in rats with concomitant KTC administration.


Asunto(s)
Sistemas de Liberación de Medicamentos , Células Madre Neoplásicas/efectos de los fármacos , Piranos/farmacología , Piranos/farmacocinética , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Piranos/química , Ratas , Ratas Sprague-Dawley
14.
Nutrition ; 31(1): 21-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25441585

RESUMEN

Emu (Dromaius novaehallandiae), the flightless bird native to Australia and found in many countries, is receiving much attention for its nutritional benefits as well as its medicinal value. Emu oil contains high amounts of polyunsaturated fatty acids and antioxidants. It has potent anti-inflammatory actions and thus can be used topically and orally to treat conditions such as mucositis, inflammatory bowel syndrome, and auricular inflammation, and to prevent chemotherapy-induced bone loss. Emu oil also has a hypocholesterolemic effect, transdermal penetration-enhancing activity, cosmetic and insect repellent activity, and so on. However, its mechanism(s) of actions are unclear and have not, to our knowledge, been studied to date. Previous studies suggest that the fatty acids of the ω-9, ω-6, and ω-3 series, which are present in emu oil, may act on cyclooxygenase, lipoxygenase, and lipoxin pathways to bring about its anti-inflammatory and other beneficial actions. The aim of this review was to provide a brief summary of the current knowledge of research on emu products, mainly emu oil, for the possible use as a complementary and alternative natural medicine for various chronic diseases. In this review we also highlighted the future research scope of emu oil for its possible antidiabetic activity. Thus, emu oil is an attractive pharmacologic agent to further explore for its therapeutic activity to treat various ailments.


Asunto(s)
Terapias Complementarias , Dromaiidae , Aceites/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Australia , Huevos , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/farmacología , Humanos , Inflamación/tratamiento farmacológico , Carne
15.
Chin J Nat Med ; 12(9): 663-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25263977

RESUMEN

Paracetamol (PCM) hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress; natural antioxidant compounds have been tested as an alternative therapy. This study evaluated the hepatoprotective activity of an alcoholic extract of Boswellia ovalifoliolata (BO) bark against PCM-induced hepatotoxicity. BO extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2, 2-diphenyl-1-picrylhydrazyl. Administration of PCM caused a significant increase in the release of transaminases, alkaline phosphatase, and lactate dehydrogenase in serum. Significant enhancement in hepatic lipid peroxidation and marked depletion in reduced glutathione were observed after parac intoxication with severe alterations in liver histology. BO treatment was able to mitigate hepatic damage induced by acute intoxication of PCM and showed a pronounced protective effect against lipid peroxidation, deviated serum enzymatic variables, and maintained glutathione status toward control. The results clearly demonstrate the hepatoprotective effect of BO against the toxicity induced by PCM.


Asunto(s)
Antioxidantes/uso terapéutico , Boswellia , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Acetaminofén/efectos adversos , Fosfatasa Alcalina/sangre , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Compuestos de Bifenilo/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Glutatión/metabolismo , L-Lactato Deshidrogenasa/sangre , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pruebas de Función Hepática , Masculino , Picratos/metabolismo , Corteza de la Planta , Extractos Vegetales/farmacología , Ratas Wistar , Transaminasas/sangre
16.
Inflammation ; 37(6): 2139-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25028100

RESUMEN

The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/metabolismo , Curcumina/administración & dosificación , Curcumina/metabolismo , Aceites/administración & dosificación , Aceites/metabolismo , Animales , Antiinflamatorios/administración & dosificación , Artritis/tratamiento farmacológico , Artritis/metabolismo , Disponibilidad Biológica , Quimioterapia Combinada , Edema/tratamiento farmacológico , Edema/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
17.
Environ Toxicol Pharmacol ; 38(1): 58-70, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24908637

RESUMEN

The present study was aimed to evaluvate the apoptogenic potential of ethanolic extract of leaves from Boswellia ovalifoliolata (BL EthOH) and to unravel the molecular mechanisms implicated in apoptosis of Triple Negative Breast Cancer (TNBC) cells. BL EthOH was cytotoxic against TNBC cells like MDA-MB-231 and MDA-MB-453 with IC50 concentrations 67.48 ± 5.45 and 70.03 ± 4.76 µg/ml, respectively. Apoptotic studies showed that BL EthOH was able to induce apoptosis and western blot studies demonstrated that BL EthOH significantly decreased the Phospho-NF-κB (ser536), PCNA, anti-apoptotic protein Bcl-2 expression and increased the expression of pro-apoptotic protein Bax, in MDA-MB-231 and MDA-MB-453 cell lines when compared with untreated cells. Besides, BL EthOH has synergistic chemosensitizing effects on TNBC cells and increased the cytotoxicity of doxorubicin and cisplatin.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Boswellia , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN , Resistencia a Antineoplásicos , Femenino , Humanos , FN-kappa B/metabolismo , Hojas de la Planta , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas , Proteína X Asociada a bcl-2/metabolismo
18.
Environ Toxicol Pharmacol ; 36(3): 840-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23981374

RESUMEN

The aim of the study was to investigate the potential protective effect of ethanolic extract of Boswellia ovalifoliolata (BO) bark and leaf against doxorubicin (DOX)-induced cardiotoxicity in mice. Ethanolic extracts of BO bark (400 mg/kg) and leaves (250 mg/kg) were given orally to mice for 9 consecutive days and DOX (15 mg/kg; i.p.) was administered on the seventh day. Extract protected against DOX-induced ECG changes. It significantly inhibited DOX-provoked glutathione depletion and accumulation of malondialdehyde. The decrease in antioxidant enzyme activities of catalase, superoxide dismutase, glutathione peroxidase in cardiac tissue were significantly (p<0.05) mitigated after treatment with BO bark and leaf extracts. Pretreatment with BO significantly (p<0.05) restored the levels of DOX-induced rise of SGPT, SGOT, serum lactate dehydrogenase and creatine kinase-MB levels. These findings suggest that ethanolic extract of BO has protective effects against DOX-induced cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/antagonistas & inhibidores , Antibióticos Antineoplásicos/toxicidad , Boswellia/química , Cardiotónicos , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/toxicidad , Cardiopatías/prevención & control , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Catalasa/metabolismo , Cromatografía en Capa Delgada , Etanol , Flavonoides/análisis , Depuradores de Radicales Libres/farmacología , Glutatión/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/patología , Masculino , Malondialdehído/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Fenoles/análisis , Picratos/química , Corteza de la Planta/química , Hojas de la Planta/química , Solventes , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
19.
Asian Pac J Trop Med ; 6(5): 337-45, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23608371

RESUMEN

OBJECTIVE: To evaluate the anti-proliferative and apoptogenic activity of ethyl acetate extract from the leaves of Memecylon edule (EtAc-LME) in MKN-74, NUGC gastric cancer cells and non cancerous gastric mucous cells (GES-1), and to explore the mechanism of EtAc-LME induced apoptosis. METHODS: The mechanism of EtAc-LME induced apoptosis was explored by analysing the activation of pro-caspases, PARP cleavage, expression of cytochrome-c (Cyt-c) was determined by western blotting, mRNA expression of Bcl-2, Bax by RT-PCR, loss of mitochondrial potential using DiOC6 dye, annexin binding assay and its influence on cell cycle arrest by flow cytometry. RESULTS: The results indicated that EtAc-LME inhibited the gastric cancer cell growth in dose-dependent manner and cytotoxicity was more towards the gastric cancer cells (NUGC and MKN-74) compared to normal gastric cells (GES-1), suggesting more specific cytotoxicity to the malignant cells. Over expression of Cyt-c and subsequent activation of caspases-3 and down regulation of Bcl-2 and loss in mitochondrial potential in EtAc-LME treated MKN-74 and NUGC cells suggested that EtAc-LME induced apoptosis by mitochondrial dependent pathway. CONCLUSIONS: The present findings suggest that ethyl acetate extract of Memecylon edule induces apoptosis selectively in gastric cancer cells emphasizing the importance of this traditional medicine for its potential in the treatment of gastric cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Melastomataceae/química , Extractos Vegetales/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Acetatos/química , Análisis de Varianza , Anexina A5/metabolismo , Antineoplásicos/química , Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química , Reacción en Cadena de la Polimerasa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
20.
Bioorg Med Chem Lett ; 18(14): 4015-7, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18579374

RESUMEN

The dried roots of Saussurea lappa, called costus roots, are used in the traditional system of medicine for the treatment of cancer. In our investigation for the anticancer constituents from the hexane extract of this plant, a new sesquiterpene (1) was isolated along with the known compounds costunolide (2), beta-cyclocostunolide (3), dihydro costunolide (4) and dehydro costuslactone (5). Their structures were established by the extensive spectroscopic analyses. In addition, costunolide and beta-cyclocostunolide derivatives were synthesized using Michael-type addition reaction of NaOMe to the alpha-methylene-gamma-lactone moiety. All the compounds were tested for their in vitro cytotoxic activity. Compound 1 exhibited potent cytotoxic activity and other compounds displayed moderate activity.


Asunto(s)
Antineoplásicos/farmacología , Lactonas/química , Extractos Vegetales/farmacología , Raíces de Plantas/metabolismo , Saussurea/metabolismo , Sesquiterpenos/química , Línea Celular Tumoral , Química Farmacéutica/métodos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA