Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36139754

RESUMEN

H2S is a gaseous signaling molecule enzymatically produced in mammals and H2S-producing enzymes are expressed throughout the vascular wall. We previously reported that H2S-induced vasodilation is mediated through transient receptor potential cation channel subfamily V member 4 (TRPV4) and large conductance (BKCa) potassium channels; however, regulators of this pathway have not been defined. Previous reports have shown that membrane cholesterol limits activity of TRPV4 and BKCa potassium channels. The current study examined the ability of endothelial cell (EC) plasma membrane (PM) cholesterol to regulate H2S-induced vasodilation. We hypothesized that EC PM cholesterol hinders H2S-mediated vasodilation in large mesenteric arteries. In pressurized, U46619 pre-constricted mesenteric arteries, decreasing EC PM cholesterol in large arteries using methyl-ß-cyclodextrin (MBCD, 100 µM) increased H2S-induced dilation (NaHS 10, 100 µM) but MBCD treatment had no effect in small arteries. Enface fluorescence showed EC PM cholesterol content is higher in large mesenteric arteries than in smaller arteries. The NaHS-induced vasodilation following MBCD treatment in large arteries was blocked by TRPV4 and BKCa channel inhibitors (GSK219384A, 300 nM and iberiotoxin, 100 nM, respectively). Immunohistochemistry of mesenteric artery cross-sections show that TRPV4 and BKCa are both present in EC of large and small arteries. Cholesterol supplementation into EC PM of small arteries abolished NaHS-induced vasodilation but the cholesterol enantiomer, epicholesterol, had no effect. Proximity ligation assay studies did not show a correlation between EC PM cholesterol content and the association of TRPV4 and BK. Collectively, these results demonstrate that EC PM cholesterol limits H2S-induced vasodilation through effects on EC TRPV4 and BKCa channels.

2.
Am J Respir Cell Mol Biol ; 62(6): 709-718, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31945301

RESUMEN

Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 µm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.


Asunto(s)
Calcio/fisiología , Caveolina 1/biosíntesis , Colesterol/fisiología , Hipoxia/fisiopatología , Lípidos de la Membrana/fisiología , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/fisiopatología , Vasoconstricción/fisiología , Animales , Caveolina 1/genética , Enfermedad Crónica , Receptores ErbB/fisiología , Hipoxia/metabolismo , Masculino , Potenciales de la Membrana , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Superóxidos/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 314(2): H359-H369, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101179

RESUMEN

Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.


Asunto(s)
Señalización del Calcio , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Proteína ORAI1/metabolismo , Arteria Pulmonar/metabolismo , Animales , Presión Arterial , Benzodioxoles/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Enfermedad Crónica , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/efectos de los fármacos , Hipoxia/fisiopatología , Masculino , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/genética , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Molécula de Interacción Estromal 1/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 312(6): H1176-H1184, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28364016

RESUMEN

Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) are decreased in pulmonary arteries from CH rats (4 wk, barometric pressure = 380 Torr) compared with normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ entry are major components of the response to ATP and are similarly decreased after CH. We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced pulmonary endothelial Ca2+ entry and that CH attenuates these responses by decreasing membrane Chol. To test these hypotheses, we administered Chol or epicholesterol (Epichol) to acutely isolated pulmonary arterial endothelial cells (PAECs) from control and CH rats to either supplement or replace native Chol, respectively. The efficacy of membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced ATP-induced Ca2+ influx in PAECs from control rats. Whereas Epichol similarly blunted endothelial SOCE in PAECs from both groups, Chol supplementation restored diminished SOCE in PAECs from CH rats while having no effect in controls. Similar effects of Chol manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel antagonist mibefradil but not the L-type Ca2+ channel inhibitor diltiazem. We conclude that PAEC membrane Chol is required for ATP-induced Ca2+ entry and its two components, SOCE and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due to loss of this key regulator.NEW & NOTEWORTHY This research is the first to examine the direct role of membrane cholesterol in regulating pulmonary endothelial agonist-induced Ca2+ entry and its components. The results provide a potential mechanism by which chronic hypoxia impairs pulmonary endothelial Ca2+ influx, which may contribute to pulmonary hypertension.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Arteria Pulmonar/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Caveolas/metabolismo , Membrana Celular/efectos de los fármacos , Células Cultivadas , Colesterol/farmacología , Enfermedad Crónica , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Masculino , Potenciales de la Membrana , Arteria Pulmonar/efectos de los fármacos , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA