Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37045472

RESUMEN

Old animals display significant alterations in sleep-wake patterns such as increases in sleep fragmentation and sleep propensity. Here, we demonstrated that PR-domain containing protein 13 (Prdm13)+ neurons in the dorsomedial hypothalamus (DMH) are activated during sleep deprivation (SD) in young mice but not in old mice. Chemogenetic inhibition of Prdm13+ neurons in the DMH in young mice promotes increase in sleep attempts during SD, suggesting its involvement in sleep control. Furthermore, DMH-specific Prdm13-knockout (DMH-Prdm13-KO) mice recapitulated age-associated sleep alterations such as sleep fragmentation and increased sleep attempts during SD. These phenotypes were further exacerbated during aging, with increased adiposity and decreased physical activity, resulting in shortened lifespan. Dietary restriction (DR), a well-known anti-aging intervention in diverse organisms, ameliorated age-associated sleep fragmentation and increased sleep attempts during SD, whereas these effects of DR were abrogated in DMH-Prdm13-KO mice. Moreover, overexpression of Prdm13 in the DMH ameliorated increased sleep attempts during SD in old mice. Therefore, maintaining Prdm13 signaling in the DMH might play an important role to control sleep-wake patterns during aging.


Asunto(s)
Hipotálamo , Privación de Sueño , Ratones , Animales , Hipotálamo/metabolismo , Privación de Sueño/metabolismo , Obesidad/metabolismo , Sueño , Dieta , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nat Rev Neurosci ; 23(1): 35-52, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728833

RESUMEN

Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.


Asunto(s)
Hipotálamo/fisiología , Hipotálamo/fisiopatología , Bulbo Raquídeo/fisiología , Bulbo Raquídeo/fisiopatología , Red Nerviosa/fisiología , Red Nerviosa/fisiopatología , Estrés Fisiológico , Estrés Psicológico/fisiopatología , Animales , Regulación de la Temperatura Corporal/fisiología , Trastornos de Estrés por Calor/fisiopatología , Humanos , Vías Nerviosas/fisiología
3.
Auton Neurosci ; 237: 102918, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823147

RESUMEN

In mammals, many types of psychological stressors elicit a variety of sympathoexcitatory responses paralleling the classic fight-or-flight response to a threat to survival, including increased body temperature via brown adipose tissue thermogenesis and cutaneous vasoconstriction, and increased skeletal muscle blood flow via tachycardia and visceral vasoconstriction. Although these responses are usually supportive for stress coping, aberrant sympathetic responses to stress can lead to clinical issues in psychosomatic medicine. Sympathetic stress responses are mediated mostly by sympathetic premotor drives from the rostral medullary raphe region (rMR) and partly by those from the rostral ventrolateral medulla (RVLM). Hypothalamomedullary descending pathways from the dorsomedial hypothalamus (DMH) to the rMR and RVLM mediate important, stress-driven sympathoexcitatory transmission to the premotor neurons to drive the thermal and cardiovascular responses. The DMH also likely sends an excitatory input to the paraventricular hypothalamic nucleus to stimulate stress hormone release. Neurons in the DMH receive a stress-related excitation from the dorsal peduncular cortex and dorsal tenia tecta (DP/DTT) in the ventromedial prefrontal cortex. By connecting the corticolimbic emotion circuit to the central sympathetic and somatic motor systems, the DP/DTT â†’ DMH pathway plays as the primary mediator of the psychosomatic signaling that drives a variety of sympathetic and behavioral stress responses. These brain regions together with other stress-related regions constitute a central neural network for physiological stress responses. This network model is relevant to understanding the central mechanisms by which stress and emotions affect autonomic regulations of homeostasis and to developing new therapeutic strategies for various stress-related disorders.


Asunto(s)
Regulación de la Temperatura Corporal , Termogénesis , Tejido Adiposo Pardo , Animales , Hipotálamo , Bulbo Raquídeo , Estrés Psicológico , Sistema Nervioso Simpático
4.
Bioessays ; 40(8): e1700252, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29869415

RESUMEN

The recent discovery of the medullary circuit driving "hunger responses" - reduced thermogenesis and promoted feeding - has greatly expanded our knowledge on the central neural networks for energy homeostasis. However, how hypothalamic hunger and satiety signals generated under fasted and fed conditions, respectively, control the medullary autonomic and somatic motor mechanisms remains unknown. Here, in reviewing this field, we propose two hypothalamomedullary neural pathways for hunger and satiety signaling. To trigger hunger signaling, neuropeptide Y activates a group of neurons in the paraventricular hypothalamic nucleus (PVH), which then stimulate an excitatory pathway to the medullary circuit to drive the hunger responses. In contrast, melanocortin-mediated satiety signaling activates a distinct group of PVH neurons, which then stimulate a putatively inhibitory pathway to the medullary circuit to counteract the hunger signaling. The medullary circuit likely contains inhibitory and excitatory premotor neurons whose alternate phasic activation generates the coordinated masticatory motor rhythms to promote feeding.


Asunto(s)
Metabolismo Energético , Hambre/fisiología , Hipotálamo/fisiología , Saciedad/fisiología , Tejido Adiposo Pardo/fisiología , Animales , Homeostasis/fisiología , Humanos , Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiología , Melanocortinas/metabolismo , Vías Nerviosas , Neuropéptido Y/metabolismo , Transducción de Señal , Termogénesis
5.
Pflugers Arch ; 470(5): 823-837, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29209779

RESUMEN

Energy homeostasis of mammals is maintained by balancing energy expenditure within the body and energy intake through feeding. Several lines of evidence indicate that brown adipose tissue (BAT), a sympathetically activated thermogenic organ, turns excess energy into heat to maintain the energy balance in rodents and humans, in addition to its thermoregulatory role for the defense of body core temperature in cold environments. Elucidating the central circuit mechanism controlling BAT thermogenesis dependent on nutritional conditions and food availability in relation to energy homeostasis is essential to understand the etiology of symptoms caused by energy imbalance, such as obesity. The central thermogenic command outflow to BAT descends through an excitatory neural pathway mediated by hypothalamic, medullary and spinal sites. This sympathoexcitatory thermogenic drive is controlled by tonic GABAergic inhibitory signaling from the thermoregulatory center in the preoptic area, whose tone is altered by body core and cutaneous thermosensory inputs. This circuit controlling BAT thermogenesis for cold defense also functions for the development of fever and psychological stress-induced hyperthermia, indicating its important role in the defense from a variety of environmental stressors. When food is unavailable, hunger-driven neural signaling from the hypothalamus activates GABAergic neurons in the medullary reticular formation, which then block the sympathoexcitatory thermogenic outflow to BAT to reduce energy expenditure and simultaneously command the masticatory motor system to promote food intake-effectively commanding responses to survive starvation. This article reviews the central mechanism controlling BAT thermogenesis in relation to the regulation of energy and thermal homeostasis dependent on food availability.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Ingestión de Alimentos , Hipotálamo/fisiología , Bulbo Raquídeo/fisiología , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Bulbo Raquídeo/metabolismo
6.
Sci Rep ; 7(1): 5031, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694517

RESUMEN

Thermoregulatory behaviour, such as migration to a comfortable thermal environment, is a representative innate animal behaviour and facilitates effective autonomic regulation of body temperature with a reduced cost of resources. Here we determine the central thermosensory ascending pathway that transmits information on environmental temperature from cutaneous thermoreceptors to elicit thermoregulatory behaviour. To examine the contribution of the spinothalamocortical pathway, which is known to mediate thermosensory transmission for perception of skin temperature, we lesioned thalamic regions mediating this pathway in rats. Thalamic-lesioned rats showed compromised electroencephalographic responses in the primary somatosensory cortex to changes in skin temperature, indicating functional ablation of the spinothalamocortical pathway. However, these lesioned rats subjected to a two-floor innocuous thermal plate preference test displayed intact heat- and cold-avoidance thermoregulatory behaviours. We then examined the involvement of the lateral parabrachial nucleus (LPB), which mediates cutaneous thermosensory signaling to the thermoregulatory center for autonomic thermoregulation. Inactivation of neurons in the LPB eliminated both heat- and cold-avoidance thermoregulatory behaviours and ablated heat defense. These results demonstrate that the LPB, but not the thalamus, mediates the cutaneous thermosensory neural signaling required for behavioural thermoregulation, contributing to understanding of the central circuit that generates thermal comfort and discomfort underlying thermoregulatory behaviours.


Asunto(s)
Regulación de la Temperatura Corporal , Núcleos Parabraquiales/fisiología , Tálamo/fisiología , Termorreceptores/metabolismo , Animales , Reacción de Prevención , Electroencefalografía , Masculino , Ratas , Transducción de Señal , Corteza Somatosensorial/fisiología
7.
Cell Metab ; 25(2): 322-334, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28065829

RESUMEN

Hypothalamic neuropeptide Y (NPY) elicits hunger responses to increase the chances of surviving starvation: an inhibition of metabolism and an increase in feeding. Here we elucidate a key central circuit mechanism through which hypothalamic NPY signals drive these hunger responses. GABAergic neurons in the intermediate and parvicellular reticular nuclei (IRt/PCRt) of the medulla oblongata, which are activated by NPY-triggered neural signaling from the hypothalamus, potentially through the nucleus tractus solitarius, mediate the NPY-induced inhibition of metabolic thermogenesis in brown adipose tissue (BAT) via their innervation of BAT sympathetic premotor neurons. Intriguingly, the GABAergic IRt/PCRt neurons innervating the BAT sympathetic premotor region also innervate the masticatory motor region, and stimulation of the IRt/PCRt elicits mastication and increases feeding as well as inhibits BAT thermogenesis. These results indicate that GABAergic IRt/PCRt neurons mediate hypothalamus-derived hunger signaling by coordinating both autonomic and feeding motor systems to reduce energy expenditure and to promote feeding.


Asunto(s)
Masticación , Bulbo Raquídeo/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Animales , Conducta Alimentaria , Neuronas GABAérgicas/metabolismo , Hipotálamo/metabolismo , Masculino , Neuronas Motoras/metabolismo , Miocardio/metabolismo , Miocardio/patología , Núcleos del Rafe/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Sinapsis/metabolismo , Taquicardia/metabolismo , Taquicardia/patología , Termogénesis
8.
Intern Med ; 53(18): 2149-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25224205

RESUMEN

A 33-year-old man who had recently undergone surgery for cervical spondylotic myelopathy was prescribed pregabalin for neuralgia, and the dose was increased to 600 mg/day during hospitalization. However, the patient was diagnosed with a Clostridium difficile infection on day 34 after admission. A complete blood count showed agranulocytosis (neutrophil count: 105/µL). We did not observe any changes in vital signs, a relative increase in band cells, or intestinal edema. The patient's agranulocytosis resolved after withdrawing pregabalin. This is the first reported case of agranulocytosis associated with pregabalin. Periodic monitoring of the white blood cell count is therefore considered to be useful in patients receiving high-dose pregabalin therapy.


Asunto(s)
Agranulocitosis/complicaciones , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/etiología , Ácido gamma-Aminobutírico/análogos & derivados , Adulto , Agranulocitosis/inducido químicamente , Infecciones por Clostridium/diagnóstico , Infecciones por Clostridium/microbiología , Humanos , Masculino , Pregabalina , Ácido gamma-Aminobutírico/efectos adversos
9.
Cell Metab ; 20(2): 346-58, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24981837

RESUMEN

Psychological stress-induced hyperthermia (PSH) is a fundamental autonomic stress response observed in many mammalian species. Here we show a hypothalamomedullary, glutamatergic neural pathway for psychological stress signaling that drives the sympathetic thermogenesis in brown adipose tissue (BAT) that contributes to PSH. Using in vivo drug nanoinjections into rat brain and thermotelemetry, we demonstrate that the rostral medullary raphe region (rMR) and dorsomedial hypothalamus (DMH) mediate a psychosocial stress-induced thermogenesis in BAT and PSH. Functional neuroanatomy indicates that the DMH functions as a hub for stress signaling, with monosynaptic projections to the rMR for sympathetic outputs and to the paraventricular hypothalamic nucleus for neuroendocrine outputs. Optogenetic experiments showed that the DMH-rMR monosynaptic pathway drives BAT thermogenesis and cardiovascular responses. These findings make an important contribution to our understanding of the central autonomic circuitries linking stress coping with energy homeostasis-potentially underlying the etiology of psychogenic fever, a major psychosomatic symptom.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Fiebre/etiología , Hipotálamo/metabolismo , Núcleos del Rafe/metabolismo , Estrés Psicológico , Animales , Femenino , Masculino , Ratas , Ratas Long-Evans , Ratas Wistar , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Adrenérgicos beta/metabolismo , Termogénesis
10.
Front Biosci (Landmark Ed) ; 16(1): 74-104, 2011 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-21196160

RESUMEN

Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Vías Nerviosas/fisiología , Tejido Adiposo Pardo/fisiología , Vías Aferentes/fisiología , Animales , Dinoprostona/fisiología , Fiebre/inducido químicamente , Corazón/fisiología , Hipotálamo/fisiología , Bulbo Raquídeo/fisiopatología , Puente/fisiología , Células del Asta Posterior/fisiología , Área Preóptica/fisiología , Tiritona/fisiología , Temperatura Cutánea/fisiología , Sistema Nervioso Simpático/fisiología , Termogénesis/fisiología , Vasoconstricción/fisiología
11.
J Mol Biol ; 363(2): 345-54, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16979184

RESUMEN

Deficits in sensorimotor gating, a function to focus on the most salient stimulus, could lead to a breakdown of cognitive integrity, and could reflect the "flooding" by sensory overload and cognitive fragmentation seen in schizophrenia. Sensorimotor gating emerges at infancy, and matures during childhood. The mechanisms that underlie its development are largely unclear. Here, we screened the mouse genome, and found that tryptophan hydroxylase (TPH) is implicated in the maturation of sensorimotor gating. TPH, an enzyme involved in the biosynthesis of serotonin, proved to be required only during the weaning period for maturation of sensorimotor gating, but was dispensable for its emergence. Proper serotonin levels during development underlie the mature functional architecture for sensorimotor gating via appropriate actin polymerization. Thus, maintaining proper serotonin levels during childhood may be important for mature sensorimotor gating in adulthood.


Asunto(s)
Cognición/fisiología , Período Crítico Psicológico , Reflejo de Sobresalto/fisiología , Triptófano Hidroxilasa/metabolismo , Estimulación Acústica , Actinas/metabolismo , Animales , Línea Celular , Electroencefalografía , Genoma , Escala de Lod , Ratones , Ratones Endogámicos , Repeticiones de Microsatélite , Inhibición Neural/fisiología , Neuronas/citología , Neuronas/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Polimorfismo Conformacional Retorcido-Simple , Sitios de Carácter Cuantitativo , Ratas , Ratas Wistar , Esquizofrenia/fisiopatología , Serotonina/metabolismo , Triptófano Hidroxilasa/genética
12.
J Immunol ; 170(7): 3631-6, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12646627

RESUMEN

Galectin-9 (Gal-9) induced the apoptosis of not only T cell lines but also of other types of cell lines in a dose- and time-dependent manner. The apoptosis was suppressed by lactose, but not by sucrose, indicating that beta-galactoside binding is essential for Gal-9-induced apoptosis. Moreover, Gal-9 required at least 60 min of Gal-9 binding and possibly de novo protein synthesis to mediate the apoptosis. We also assessed the apoptosis of peripheral blood T cells by Gal-9. Apoptosis was induced in both activated CD4(+) and CD8(+) T cells, but the former were more susceptible than the latter. A pan-caspase inhibitor (Z-VAD-FMK) inhibited Gal-9-induced apoptosis. Furthermore, a caspase-1 inhibitor (Z-YVAD-FMK), but not others such as Z-IETD-FMK (caspase-8 inhibitor), Z-LEHD-FMK (caspase-9 inhibitor), and Z-AEVD-FMK (caspase-10 inhibitor), inhibited Gal-9-induced apoptosis. We also found that a calpain inhibitor (Z-LLY-FMK) suppresses Gal-9-induced apoptosis, that Gal-9 induces calcium (Ca(2+)) influx, and that either the intracellular Ca(2+) chelator BAPTA-AM or an inositol trisphosphate inhibitor 2-aminoethoxydiphenyl borate inhibits Gal-9-induced apoptosis. These results suggest that Gal-9 induces apoptosis via the Ca(2+)-calpain-caspase-1 pathway, and that Gal-9 plays a role in immunomodulation of T cell-mediated immune responses.


Asunto(s)
Apoptosis/fisiología , Señalización del Calcio , Calpaína/fisiología , Caspasa 1/fisiología , Galectinas/fisiología , Adyuvantes Inmunológicos/fisiología , Clorometilcetonas de Aminoácidos/farmacología , Linfocitos B/citología , Linfocitos B/enzimología , Linfocitos B/fisiología , Calcio/metabolismo , Calcio/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/inmunología , Inhibidores de Caspasas , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta Inmunológica , Células HL-60 , Humanos , Células Jurkat , Monocitos/citología , Monocitos/enzimología , Monocitos/fisiología , Células Mieloides/citología , Células Mieloides/enzimología , Células Mieloides/fisiología , Oligopéptidos/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Linfocitos T/citología , Linfocitos T/enzimología , Linfocitos T/fisiología , Células Tumorales Cultivadas
13.
Brain Res ; 958(2): 347-58, 2002 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-12470871

RESUMEN

We investigated the temporal relationship between hippocampal theta waves and ponto-geniculo-occipital waves (PGO) during rapid eye movement sleep (REM sleep) in cats. In addition, we analyzed the relationship between hippocampal theta waves and PGO as elicited by tone stimulus (PGO(E)) in order to quantitively characterize the PGO wave generator mechanism. The results showed that a spontaneous PGO tended to be phase-locked to the theta wave, which was more clearly observed in the single PGO than in the cluster. However, cluster PGO(E) tended to be phase-locked as well as single PGO(E). It was therefore suggested that the generator of PGO is activated in relation to the hippocampal theta wave. An acceleration of the theta wave associated with PGO occurrence was found, and was more markedly observed than with the cluster PGO. Although the magnitude of it was less than in the spontaneous case, an acceleration around the PGO(E) was also observed. These results suggest that the generators of theta and PGO receive some common activations, especially when a cluster PGO is generated. The interaction between PGO and hippocampal theta waves is expected to be involved in the possible functions of REM sleep.


Asunto(s)
Cuerpos Geniculados/fisiología , Hipocampo/fisiología , Lóbulo Occipital/fisiología , Puente/fisiología , Sueño REM/fisiología , Estimulación Acústica/métodos , Animales , Gatos , Ritmo Teta/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA