Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Complement Integr Med ; 21(2): 184-190, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299353

RESUMEN

OBJECTIVES: Stress is an aversive stimulus which disrupts the biological milieu of the organism and a variety of emotional and environmental stressors are known to influence allergic and immunological disorders like bronchial asthma but the pharmacological basis of such interactions is not clearly defined. Withania somnifera (ashwagandha) is a potent anti-stress agent used widely in Indian traditional medicine and the present experimental study evaluated the effects of W. somnifera extract (WSE) on chronic stress-induced neurobehavioral and immunological responses in an experimental model of allergic asthma in rats. METHODS: Wistar rats (200-250 g) were immunized and challenged with ovalbumin (OVA) and exposed to restraint stress (RS) and WSE treatments for 15 days. Following this, anxiety behavior was assessed by the elevated plus maze (EPM) test, and blood and BAL fluid samples were collected for measuring of inflammatory/immune markers by ELISA and biochemical assay. The data of the various treatment groups were analyzed by ANOVA and Tukey's test. RESULTS: Restraint stress (RS) induced anxiogenic behavior in the (EPM) test in OVA immunized rats, and this was attenuated by WSE (200 and 400 mg/kg), in a dose related manner. Examination of blood and BAL fluid in these RS exposed rats also resulted in elevations in IgE, TNF-α and IL-4 levels, which were also attenuated by WSE pretreatments. Further, WSE pretreatment neutralized the such RS induced changes in oxidative stress markers viz. elevated MDA and reduced GSH levels. CONCLUSIONS: The data pharmacologically validates role of stress in asthma and suggests that adaptogens like WSE could be a potential complementary agent for reducing anxiety as well as airway inflammation by a multi-targeted and holistic approach. The study also highlights the significance of integration of traditional and modern medical concepts in such chronic disorders.


Asunto(s)
Ansiedad , Asma , Extractos Vegetales , Ratas Wistar , Estrés Psicológico , Withania , Animales , Withania/química , Estrés Psicológico/tratamiento farmacológico , Extractos Vegetales/farmacología , Masculino , Ansiedad/tratamiento farmacológico , Ratas , Asma/tratamiento farmacológico , Asma/inmunología , Ovalbúmina , Inflamación/tratamiento farmacológico , Restricción Física , Factor de Necrosis Tumoral alfa/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulina E/sangre , Conducta Animal/efectos de los fármacos , Líquido del Lavado Bronquioalveolar , Fitoterapia
2.
J Pharmacopuncture ; 26(2): 158-166, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37405114

RESUMEN

Objectives: Airway remodeling in asthma involves chronic inflammation associated with structural changes, which result in severe airflow limitation and very few therapeutic options. Thus, the present study was designed to experimentally evaluate the ameliorative effects of Withania somnifera (WS) root extract against Ovalbumin (OVA)-induced airway remodeling in a rat model of asthma. Methods: Wistar rats were immunized (i.p) and challenged (aerosol) with ovalbumin (OVA), and the effects of WS extract were investigated on the development and progress of airway remodeling by assessing immunological, biochemical, and histological changes in these rats. Results: OVA-immunization and challenge in rats resulted in significant increases in the levels of IL-13, 8-OhdG, TGF-ß, hydroxyproline, and periostin in bronchoalveolar lavage fluid (BALF) and serum/lung homogenate compared to normal control (saline only) rats, and these changes were attenuated after WS extract (200 and 400 mg/kg), as well as dexamethasone (DEX, 1 mg/kg) pretreatments. Further, WS extract attenuated histopathological changes and maintained lung integrity. In herb-drug interactions, sub-threshold doses of WS extract and DEX showed synergistic effects on all parameters studied as compared to either form of monotherapy. Conclusion: These results indicated that WS exerted significant protective effects against airway remodeling in the experimental model by modulating inflammatory and fibrotic cytokines, and could have the potential for developing a therapeutic alternative/adjunct for the treatment of airway remodeling of bronchial asthma.

3.
Artículo en Inglés | MEDLINE | ID: mdl-33880073

RESUMEN

Dementia is a term that encompasses a group of clinical symptoms affecting memory, thinking and social abilities, characterized by progressive impairment of memory performance and cognitive functions. There are several factors involved in the pathogenesis and progression of dementia, such as old age, brain ischemia, toxin exposure, and oxidative stress. There are extensive similarities between dementia and Alzheimer's disease (AD) either in clinical manifestations or experimental animal models. AD is the most dominant form of dementia, characterized by the accumulation of beta-amyloid protein and cholinergic neurotransmission deficits in the brain. Currently available medications for the treatment of dementia, such as choline esterase inhibitors, N-methyl-D-aspartate (NMDA) antagonists (memantine), have short-term efficacy and only relieve symptoms rather than targeting the main underlying pathogenesis. Several animal studies and clinical trials are being conducted to provide a rational approach to these medicinal plants in the prevention or treatment of memory deficits. This review highlights the potential effects of medicinal plants and their derived lead molecules, and explains the related mechanisms and effects reviewed from published literature as major thrust aspects and hopeful strategies in the prevention or treatment of dementia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA