Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Tissue Cell ; 87: 102321, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350206

RESUMEN

The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citrus , Ivermectina/análogos & derivados , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Hígado/patología , Citrus/metabolismo , Extractos Vegetales/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
2.
Environ Toxicol ; 34(3): 330-339, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30578656

RESUMEN

Oxidative stress and increased production of reactive oxygen species have been implicated in pesticides and heavy metals toxicity. The objective of this study was to investigate the efficacy of Turnera diffusa Willd (damiana) on counteracting fenitrothion (FNT) and/or potassium dichromate (CrVI)-induced testicular toxicity and oxidative injury in rats. FNT and/or CrVI intoxicated animals revealed a significant increase in thiobarbituric acid reactive substances and hydrogen peroxide levels. While, reduced glutathione and protein content, as well as antioxidant enzymes, phosphatases, and aminotransferases activities, were significantly decreased. In addition, significant changes in testosterone and follicle-stimulating hormone levels were detected. Furthermore, histological and immunohistochemical alterations were observed in rat testes and this supported the observed biochemical changes. On the other hand, rats treated with damiana alone decreased lipid peroxidation and increased most of the examined parameters. Moreover, damiana pretreatment to FNT and/or CrVI-intoxicated rats showed significant improvement in lipid peroxidation, enzyme activities, and hormones as compared with their respective treated groups. Conclusively, rats treated with both FNT and/or CrVI showed pronounced hazardous effect especially in their combination group in addition, Turnera diffusa had a potential protective role against FNT and/or CrVI induced testicular toxicity.


Asunto(s)
Cromo/toxicidad , Fenitrotión/toxicidad , Extractos Vegetales/administración & dosificación , Sustancias Protectoras/administración & dosificación , Testículo/efectos de los fármacos , Turnera/química , Animales , Antioxidantes/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Dicromato de Potasio/toxicidad , Ratas , Ratas Wistar , Testículo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
3.
J Trace Elem Med Biol ; 28(1): 89-93, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24188896

RESUMEN

Diazinon (DZN) is one of the most organophosphate insecticides that widely used in agriculture and industry. Selenium is generally recognized to be a trace mineral of great importance for human health, protecting the cells from the harmful effects of free radicals. Therefore, the present study was carried out to investigate the alterations in biochemical parameters, free radicals and enzyme activities induced by diazinon in male rat serum, and the role of selenium in alleviating the negative effects of DZN. Animals were divided into four groups of seven rats each; the first group was used as control. Groups 2, 3 and 4 were treated with selenium (Se; 200µg/kg BW), diazinon (DZN; 10mg/kg BW) and diazinon plus selenium, respectively. Rats were orally administered their respective doses daily for 30 days. Results obtained showed that DZN significantly induced thiobarbituric acid reactive substances (TBARS) and decreased the activities of glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) and the levels of reduced glutathione (GSH) in rat sera. Aminotransferases (AST, ALT), phosphatases (AlP, AcP) and lactate dehydrogenase (LDH) activities were significantly increased while acetylcholinesterase (AChE) activity was decreased due to DZN administration. Also, DZN treatment caused significant perturbations in lipids profile and serum biochemical parameters. On the other hand, Se alone significantly decreased the levels of TBARS, total lipids, cholesterol, urea and creatinine, while increased the activities of antioxidant enzymes and glutathione content, total protein (TP) and albumin. In addition, Se in combination with DZN partially or totally alleviated its toxic effects on the studied parameters. In conclusion, Se has beneficial effects and could be able to antagonize DZN toxicity.


Asunto(s)
Antioxidantes/farmacología , Diazinón/farmacología , Peroxidación de Lípido/efectos de los fármacos , Selenio/farmacología , Animales , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Hiperlipidemias/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA