RESUMEN
Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.
Asunto(s)
Antioxidantes , Hierro , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Aceite de Oliva/farmacología , Especies Reactivas de Oxígeno/metabolismo , Hierro/farmacología , Peróxido de Hidrógeno/farmacología , Aceites de Plantas/farmacología , Aceites de Plantas/química , Estrés Oxidativo , Peroxidación de Lípido , Glutatión/metabolismo , Fenoles/farmacología , Superóxido Dismutasa/metabolismoRESUMEN
Recently, researchers have focused on the use of natural antioxidants to improve semen quality as a key element for successful artificial insemination. In this context, the first aim of this study was to determine the antioxidant activity and composition (minerals, vitamins, and sugars) of Opuntia ficus-indica cladode ethanolic extract (ETHEX). A further purpose of the study was to investigate the effect of ETHEX supplementation on the quality of liquid ram semen extended with skim milk (SM) at 5°C. The antioxidant activity of ETHEX was studied using free radical 1, 1-diphenyl-2-picrylhydrazyl (DPPHâ¢) assay. The mineral composition and the sugar and vitamin contents of ETHEX were determined using an inductively coupled plasma optical emission spectrometry (ICP-OES) and HPLC-DAD-RID analytical instruments. As a second part, semen was collected from five Boujaâd rams with an artificial vagina. The ejaculates with more than 70% motility were pooled, extended with skim milk (SM) extender without (control) or supplemented with 1-8% of ETHEX (37°C; 0.8 × 109 sperm/mL). Sperm quality parameters were assessed at 8, 24, 48, and 72 h. The results showed that ETHEX had a higher antioxidant activity compared to those of ascorbic acid and butylated hydroxytoluene (BHT). Furthermore, ETHEX contains a considerable amount of minerals, vitamins, and sugars. The inclusion of 1 or 2% ETHEX in SM increased the sperm motility, viability, and membrane integrity and decreased the abnormality of spontaneous and catalyzed lipids peroxidation (p < 0.05) up to 72 h. In addition, semen diluted with 1 and 2% ETHEX decreased the level of DNA fragmentation compared to the control group (p < 0.05). In conclusion, the ETHEX could be recommended to improve the quality of liquid ram spermatozoa. However, its effects on artificial insemination should be further studied.
RESUMEN
Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.
Asunto(s)
COVID-19 , Antivirales/uso terapéutico , Vacunas contra la COVID-19 , Dieta , Humanos , Incidencia , Nutrientes , Estrés Oxidativo , SARS-CoV-2RESUMEN
This study aimed to compare the influence of extraction methods on the pharmaceutical and cosmetic properties of medicinal and aromatic plants (MAPs). For this purpose, the dried plant materials were extracted using advanced (microwave (MAE), ultrasonic (UAE), and homogenizer (HAE) assisted extractions) and conventional techniques (maceration, percolation, decoction, infusion, and Soxhlet). The tyrosinase, elastase, α-amylase, butyryl, and acetylcholinesterase inhibition were tested by using L-3,4 dihydroxy-phenylalanine, N-Succinyl-Ala-Ala-p-nitroanilide, butyryl, and acetylcholine as respective substrates. Antioxidant activities were studied by ABTS, DPPH, and FRAP. In terms of extraction yield, advanced extraction techniques showed the highest values (MAE > UAE > HAE). Chemical profiles were dependent on the phenolic compounds tested, whereas the antioxidant activities were always higher, mainly in infusion and decoction as a conventional technique. In relation to the pharmaceutical and cosmetic properties, the highest inhibitory activities against α-amylase and acetylcholinesterase were observed for Soxhlet and macerated extracts, whereas the highest activity against tyrosinase was obtained with MAE > maceration > Soxhlet. Elastase and butyrylcholinesterase inhibitory activities were in the order of Soxhlet > maceration > percolation, with no activities recorded for the other tested methods. In conclusion, advanced methods afford an extract with high yield, while conventional methods might be an adequate approach for minimal changes in the biological properties of the extract.
Asunto(s)
Extractos Vegetales , Plantas Medicinales , Acetilcolinesterasa , Antioxidantes/química , Antioxidantes/farmacología , Butirilcolinesterasa , Monofenol Monooxigenasa , Elastasa Pancreática , Extractos Vegetales/química , Extractos Vegetales/farmacología , alfa-AmilasasRESUMEN
Background: Iron-overload is a well-known cause for the development of chronic liver diseases and known to induce DNA damage.Material and methods: The protective effect of argan oil (AO) from the Argania spinosa fruit and olive oil (OO) (6% AO or OO for 28 days) was evaluated on a mouse model of iron overload (3.5mg Fe2+/liter) and in human fibroblasts where DNA damage was induced via culture under hyperoxia (40% oxygen).Results: Iron treatment induced DNA damage in liver tissue while both oils were able to decrease it. We confirmed this effect in vitro in MRC-5 fibroblasts under hyperoxia. A cell-free ABTS assay suggested that improvement of liver toxicity by both oils might depend on a high content in tocopherol, phytosterol and polyphenol compounds known for their antioxidant potential. The antioxidant effect of AO was confirmed in fibroblasts by reduced intracellular peroxide levels after hyperoxia. However, we could not find a significant decrease of genes encoding pro-inflammatory cytokines (TNFα, IL-6, IL-1ß, COX-2) or senescence markers (p16 and p21) for the oils in mouse liver.Conclusion: We found a striking effect of AO by ameliorating DNA damage after iron overload in a mouse liver model and in human fibroblasts by hyperoxia adding compelling evidence to the protective mechanisms of AO and OO.
Asunto(s)
Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Sobrecarga de Hierro/tratamiento farmacológico , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Aceites de Plantas/farmacología , Animales , Hipoxia de la Célula , Línea Celular , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Mediadores de Inflamación/metabolismo , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Aceite de Oliva/farmacologíaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The genus Ziziphus (Rhamnaceae) contains 58 accepted species that are extensively used by local people and medicinal practitioners in arid and semi-arid regions for the treatment of diarrhoea, dysentery, cholera, diabetic, hypertension, inflammation, intestinal spasm, liver, malaria and other diseases. Aims of this review: This review article documents and critically assesses, for the first time; up to date categorized information about botanical traits, distribution, traditional uses, phytochemistry, pharmacological and toxicological effects of Ziziphus species. METHODS: Information was collected systematically from electronic scientific databases including Google Scholar, Science Direct, PubMed, Web of Science, ACS Publications, Elsevier, SciFinder, Wiley Online Library and CNKI, as well as other literature sources (e.g., books). KEY FINDINGS: The phytochemical investigations of plants of this genus have led to the identification of about 431 chemical constituents. Cyclopeptide alkaloids and flavonoids are the predominant groups. The crude extracts and isolated compounds exhibit a wide range of in vitro and in vivo pharmacologic effects, including antimicrobial, antitumour, antidiabetic, antidiarrhoeal, anti-inflammatory, antipyretic, antioxidant and hepatoprotective activities. Toxicity studies indicate that Ziziphus species seems to be non-toxic at typical therapeutic doses. CONCLUSION: Phytochemical and pharmacological studies have demonstrated that Ziziphus species are important medicinal herbs with prominent bioactivities. The focus so far has only been on ten species; however, plants of this genus can potentially yield a wide range of other products with different properties. Meticulous studies on pharmaceutical standardisation, mode of action of the active constituents and toxicity of Ziziphus species are needed to meet the growing demands of the pharmaceutical industry and to exploit their preventive and therapeutic potential fully.
Asunto(s)
Medicina Tradicional , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/farmacología , Ziziphus , Animales , Etnobotánica , Etnofarmacología , Humanos , Fitoquímicos/aislamiento & purificación , Fitoquímicos/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Ziziphus/químicaRESUMEN
BACKGROUND: The effects of vegetable oils on human health depend on their components. Therefore, their profiles of lipid nutrients and polyphenols were determined. OBJECTIVE: To establish and compare the fatty acid, tocopherol, phytosterol and polyphenol profiles of Mediterranean oils: cosmetic and dietary argan oils (AO; Morocco: Agadir, Berkane); olive oils (OO; Morocco, Spain, Tunisia); milk thistle seed oils (MTSO; Tunisia: Bizerte, Sousse, Zaghouane); nigella seed oil (NSO). METHODS: The biochemical profiles were determined by gas chromatography-flame ionization, high performance liquid chromatography and gas chromatography, coupled with mass spectrometry as required. The antioxidant and cytoprotective activities were evaluated with the KRL (Kit Radicaux Libres) and the fluorescein diacetate tests on nerve cells treated with 7-ketocholesterol (7KC). RESULTS: The fatty acid profile revealed high linoleic acid (C18:2 n-6) content in AO, OO, MTSO and NSO. The highest levels of oleic acid (C18:1 n-9) were found in AO and OO. The tocopherol profile showed that Agadir AO contained the highest amount of α-tocopherol, also present at high level in MTSO and Tunisian OO; Berkane AO was rich in γ-tocopherol. The phytosterol profile indicated that ß-sitosterol was predominant in the oils, except AO; spinasterol was only present in AO. Polyphenol profiles underlined that OO was the richest in polyphenols; hydroxytyrosol was only found in OO; few polyphenols were detected in AO. The oils studied have antioxidant activities, and all of them, except NSO, prevented 7KC-induced cell death. The antioxidant characteristics of AO were positively correlated with procatechic acid and compestanol levels. CONCLUSION: Based on their biochemical profiles, antioxidant and cytoprotective characteristics, AO, OO, and MTSO are potentially beneficial to human health.
Asunto(s)
Ácidos Grasos/análisis , Fitosteroles/análisis , Aceites de Plantas/análisis , Polifenoles/análisis , Tocoferoles/análisis , Animales , Antioxidantes/análisis , Línea Celular , Humanos , Ratones , Silybum marianum/química , Nigella/química , Aceite de Oliva/química , Semillas/químicaRESUMEN
Cholesterol oxidation products, also named oxysterols, can be formed either by cholesterol auto-oxidation, enzymatically or both. Among these oxysterols, 7-ketocholesterol (7KC) is mainly formed during radical attacks that take place on the carbon 7 of cholesterol. As increased levels of 7KC have been found in the tissues, plasma and/or cerebrospinal fluid of patients with major diseases, especially age-related diseases (cardiovascular diseases, eye diseases, neurodegenerative diseases), some cancers, and chronic inflammatory diseases, it is suspected that 7KC, could contribute to their development. Since 7KC, provided by the diet or endogenously formed, is not or little efficiently metabolized, except in hepatic cells, its cellular accumulation can trigger numerous side effects including oxidative stress, inflammation and cell death. To counteract 7KC-induced side effects, it is necessary to characterize the metabolic pathways activated by this oxysterol to identify potential targets for cytoprotection and geroprotection. Currently, several natural compounds (tocopherols, fatty acids, polyphenols, etc) or mixtures of compounds (oils) used in traditional medicine are able to inhibit the deleterious effects of 7KC. The different molecules identified could be valued in different ways (functional foods, recombinant molecules, theranostic) to prevent or treat diseases associated with 7KC.
Asunto(s)
Cetocolesteroles/efectos adversos , Enfermedades no Transmisibles/prevención & control , Antioxidantes/farmacología , Ácidos Grasos/farmacología , Humanos , Inflamación/prevención & control , Oxidación-Reducción , Estrés Oxidativo , Polifenoles/farmacología , Tocoferoles/farmacologíaRESUMEN
To clarify appropriateness of current claims for health and wellness virtues of argan oil, studies were conducted in inflammatory states. LPS induces inflammation with reduction of PGC1-α signaling and energy metabolism. Argan oil protected the liver against LPS toxicity and interestingly enough preservation of peroxisomal acyl-CoA oxidase type 1 (ACOX1) activity against depression by LPS. This model of LPS-driven toxicity circumvented by argan oil along with a key anti-inflammatory role attributed to ACOX1 has been here transposed to model aging. This view is consistent with known physiological role of ACOX1 in yielding precursors of specialized proresolving mediators (SPM) and with characteristics of aging and related disorders including reduced PGC1-α function and improvement by strategies rising ACOX1 (via hormonal gut FGF19 and nordihydroguaiaretic acid in metabolic syndrome and diabetes conditions) and SPM (neurodegenerative disorders, atherosclerosis, and stroke). Delay of aging to resolve inflammation results from altered production of SPM, SPM improving most aging disorders. The strategic metabolic place of ACOX1, upstream of SPM biosynthesis, along with ability of ACOX1 preservation/induction and SPM to improve aging-related disorders and known association of aging with drop in ACOX1 and SPM, all converge to conclude that ACOX1 represents a previously unsuspected and currently emerging antiaging protein.
Asunto(s)
Envejecimiento/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Lipopolisacáridos/efectos adversos , Oxidorreductasas/uso terapéutico , Aceites de Plantas/uso terapéutico , Acil-CoA Oxidasa , Animales , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Humanos , Oxidorreductasas/farmacología , Aceites de Plantas/farmacologíaRESUMEN
In sheep, artificial insemination serves as an important technique for breed improvement. In this context, genetic material from a small number of superior sires can be used in a large number of females. During this process, the storage of ram sperm may influence the efficiency of artificial insemination. Two main methods are currently used for ram semen storage: liquid storage and cryopreservation. The oxidative stress during the storage process can injure ram sperm and in some cases this leads to irreversible damage at the cellular level. To reduce such negative effects, different preservation protocols, extenders and protective components have been tested to improve ram sperm quality and to achieve greater fertility rates. This review provides an overview of the recent progress in extender supplementation using antioxidants and other compounds to improve ram semen quality parameters and fertility rates. It will emphasize on enzymes, vitamins, amino acids, proteins, some plant extracts and other compounds such as sugars, seminal plasma and fatty acids that can be used to supplement the extenders to reduce the formation of oxidants in ram semen and maintain its quality and enhance its fertility. It will also stress on how these supplements act, what were the tested levels giving beneficial effects on motility, viability, plasma membrane integrity and DNA fragmentation in liquid, cooled and post-thawing semen?
Asunto(s)
Antioxidantes/farmacología , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria , Ovinos , Animales , Masculino , Semen/efectos de los fármacos , Preservación de Semen/métodos , Manejo de Especímenes/métodos , Manejo de Especímenes/veterinariaRESUMEN
Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 µM; 24 h) without and with argan oil (0.1% v/v) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, ß-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.
Asunto(s)
Cetocolesteroles/toxicidad , Fármacos Neuroprotectores/farmacología , Oligodendroglía/efectos de los fármacos , Aceites de Plantas/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Peroxidación de Lípido , Lisosomas/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxisomas/efectos de los fármacos , alfa-Tocoferol/farmacologíaRESUMEN
Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS). Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO) or olive oil (OO) for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH) and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx). Hematoxylin-eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT) and aspartate transaminase (AST)). Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4) and Interleukin-10 (IL-10). OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs) signaling and, under LPS, an anti-inflammatory IL-10/Liver X Receptor (IL-10/LXR) route, obviously indicated the high potency and plasticity of the anti-inflammatory properties of argan oil.
Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Hepatopatías/tratamiento farmacológico , Hígado/efectos de los fármacos , Aceite de Oliva/farmacología , Estrés Oxidativo , Aceites de Plantas/farmacología , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Lipopolisacáridos/toxicidad , Hígado/metabolismo , Hepatopatías/etiología , Hepatopatías/prevención & control , Ratones , Aceite de Oliva/administración & dosificación , Aceite de Oliva/uso terapéutico , Aceites de Plantas/administración & dosificación , Aceites de Plantas/uso terapéuticoRESUMEN
In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid ß-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli-LPS decreased ACOX1 activity while Salmonella minnesota-LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activity activation and an anti-inflammatory effect by reducing nitric oxide (NO) LPS-dependent production. These results suggest that cactus extracts may possess a neuroprotective activity through the induction of peroxisomal antioxidant activity and the inhibition of NO production by activated microglial cells.
Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Catalasa/metabolismo , Microglía/metabolismo , Óxido Nítrico/metabolismo , Opuntia/química , Peroxisomas/metabolismo , Extractos Vegetales/farmacología , Animales , Línea Celular , Escherichia coli , Ácidos Grasos/metabolismo , Lipopolisacáridos , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , SalmonellaRESUMEN
The present study aimed to assess the phenolic composition of the acetone extract from Opuntia ficus indica cladodes (ACTEX) and its effects on ram semen variables, lipid peroxidation and DNA fragmentation during liquid storage at 5°C for up to 72h in skim milk and Tris egg yolk extenders. Semen samples from five rams were pooled extended with Tris-egg yolk (TEY) or skim milk (SM) extenders containing ACTEX (0%, 1%, 2%, 4% and 8%) at a final concentration of 0.8×109 sperm/ml and stored for up to 72h at 5°C. The sperm variables were evaluated at different time periods (8, 24, 48 and 72h). Sperm total motility and viability were superior in TEY than in SM whereas the progressive motility, membrane integrity, abnormality and spontaneous lipid peroxidation were greater in SM compared to TEY (P<0.05). The results also indicated that the inclusion of 1% ACTEX in the SM or TEY extender increased the sperm motility, viability, membrane integrity, and decreased the abnormality, lipids peroxidation up to 72h in storage compared to control group. Similarly, even at 72h of storage, 1% ACTEX can efficiently decrease the negative effects of liquid storage on sperm DNA fragmentation (P<0.05). In conclusion, SM and TEY supplemented with 1% of ACTEX can improve the quality of ram semen. Further studies are required to identify the active components in ACTEX involved in its effect on ram sperm preservation.
Asunto(s)
Peroxidación de Lípido/efectos de los fármacos , Opuntia/química , Extractos Vegetales/farmacología , Análisis de Semen/veterinaria , Ovinos/fisiología , Espermatozoides/efectos de los fármacos , Animales , Fragmentación del ADN , Masculino , Extractos Vegetales/química , Semen/efectos de los fármacos , Preservación de Semen , Factores de TiempoRESUMEN
Due to its high antioxidant content, the argan oil could play a beneficial role in liquid storage of ram semen. The aim of this study was to investigate effects of different concentration of argan oil (ARO) on spermatologic parameters, lipid peroxidation and DNA fragmentation during liquid storage of ram semen until 48 h. Also effects of extenders and temperature on same parameters were assessed. For these aims, semen samples were collected from Boujaâd rams, extended with Tris egg yolk or skim milk extenders without (control) or supplemented with different concentrations of ARO (1%, 2%, 5% and 10% v/v) at a final concentration of 0.8 × 10(9) sperm/mL and stored until 48 h at 5 °C or 15 °C. The sperm quality assessments were performed at different intervals during storage (0, 8, 24 and 48 h). Sperm progressive motility started to decrease after 8h of storage in all temperatures--extenders combinations and dropped steadily during the 8-48 h interval. However, sperm viability, progressive motility and membrane integrity were markedly higher in ARO groups (especially in 1% in Tris and 5% in skim milk) until 24h and 48 h storage at both temperatures compared to controls. The argan oil also decreased the level of spontaneous and induced malondialdehyde (MDA) and the sperm DNA fragmentation until 48 h storage. In conclusion, it was determined that addition of argan oil to conventional extenders may improve the quality of ram semen during liquid storage in different temperatures.
Asunto(s)
Leche/química , Aceites de Plantas/farmacología , Preservación de Semen/veterinaria , Semen/efectos de los fármacos , Trometamina/farmacología , Animales , Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Yema de Huevo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Aceites de Plantas/administración & dosificación , OvinosRESUMEN
Spinasterol and schottenol, two phytosterols present in argan oil and in cactus pear seed oil, were synthesized from commercially available stigmasterol by a four steps reactions. In addition, the effects of these phytosterols on cell growth and mitochondrial activity were evaluated on 158N murine oligodendrocytes, C6 rat glioma cells, and SK-N-BE human neuronal cells with the crystal violet test and the MTT test, respectively. The effects of spinasterol and schottenol were compared with 7-ketocholesterol (7KC) and ferulic acid, which is also present in argan and cactus pear seed oil. Whatever the cells considered, dose dependent cytotoxic effects of 7KC were observed whereas no or slight effects of ferulic acid were found. With spinasterol and schottenol, no or slight effects on cell growth were detected. With spinasterol, reduced mitochondrial activities (30-50%) were found on 158N and C6 cells; no effect was found on SK-N-BE. With schottenol, reduced mitochondrial activity were revealed on 158N (50%) and C6 (10-20%) cells; no effect was found on SK-N-BE. Altogether, these data suggest that spinasterol and schottenol can modulate mitochondrial activity and might therefore influence cell metabolism.
Asunto(s)
Sistema Nervioso Central/citología , Fitosteroles/síntesis química , Aceites de Plantas/química , Pyrus/química , Semillas/química , Sitoesteroles/síntesis química , Estigmasterol/análogos & derivados , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fitosteroles/química , Fitosteroles/farmacología , Ratas , Sitoesteroles/química , Sitoesteroles/farmacología , Estigmasterol/síntesis química , Estigmasterol/química , Estigmasterol/farmacologíaRESUMEN
Opuntia ficus-indica, commonly referred to as prickly pear or nopal cactus, is a dicotyledonous angiosperm plant. It belongs to the Cactaceae family and is characterized by its remarkable adaptation to arid and semi-arid climates in tropical and subtropical regions of the globe. In the last decade, compelling evidence for the nutritional and health benefit potential of this cactus has been provided by academic scientists and private companies. Notably, its rich composition in polyphenols, vitamins, polyunsaturated fatty acids and amino acids has been highlighted through the use of a large panel of extraction methods. The identified natural cactus compounds and derivatives were shown to be endowed with biologically relevant activities including anti-inflammatory, antioxidant, hypoglycemic, antimicrobial and neuroprotective properties. The present review is aimed at stressing the major classes of cactus components and their medical interest through emphasis on some of their biological effects, particularly those having the most promising expected health benefit and therapeutic impacts.
Asunto(s)
Opuntia/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Extractos Vegetales/uso terapéutico , Polifenoles/farmacología , Polifenoles/uso terapéuticoRESUMEN
The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitochondrial membrane potential. Furthermore, both Schottenol and Spinasterol can modulate the gene expression of two nuclear receptors, liver X receptor (LXR)-α and LXRß, their target genes ABCA1 and ABCG1. Nonetheless, only Schottenol exhibited a differential activation vis-à-vis the nuclear receptor LXRß. Thus Schottenol and Spinasterol can be considered as new LXR agonists, which may play protective roles by the modulation of cholesterol metabolism.