Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Chem Toxicol ; 45(2): 576-588, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32141350

RESUMEN

In this study, the hepatoprotective activity of methanol bark extract of Alangium salviifolium (BEA) was evaluated for biochemical and histological parameters in swiss albino mice with CCl4-induced hepatotoxicity. The hepatomodulatory effect of two doses of BEA (20 and 50 mg/kg bw for 15 days by oral gavage) was assessed on antioxidant enzymes, phase I and phase II drug detoxifying enzymes. For the characterization of the extract, GC-MS analysis was performed that revealed the abundance of alkaloids and steroidal compounds. Total phenolic and flavonoid contents in BEA were 69.61 ± 0.18 mg GAE/g and 46.27 ± 3.44 mg Rutin/g, respectively. BEA administration decreased the levels of AST, ALT, and ALP, which were elevated due to hepatic damage by CCl4. BEA significantly decreased the lipid peroxidation, activities of LDH, and phase I enzymes including cytochrome P450 reductase, cytochrome b5 reductase while increased the activities of SOD, CAT, and phase II enzymes DT-diaphorase and glutathione S-transferase in liver. Further, histological evaluation of the liver tissue was suggestive of the protective effect of BEA against CCl4 toxicity. Together, these results suggest that BEA has strong hepatoprotective activity in mice which may also be attributed to its potential chemopreventive efficacy.


Asunto(s)
Alangiaceae , Enfermedad Hepática Inducida por Sustancias y Drogas , Alangiaceae/metabolismo , Animales , Antioxidantes/metabolismo , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Peroxidación de Lípido , Hígado , Ratones , Extractos Vegetales/química
2.
BMC Complement Altern Med ; 18(1): 81, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29514630

RESUMEN

BACKGROUND: Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. METHODS: The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. RESULTS: The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. CONCLUSIONS: These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and antioxidants and therefore, might be mainly responsible for the antioxidant properties of S. aegyptiaca, while acetylsalicylic acid provided its maximum anti-inflammatory activity.


Asunto(s)
Antioxidantes/administración & dosificación , Inactivación Metabólica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Polifenoles/administración & dosificación , Salix/química , Animales , Catalasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Peroxidasa/metabolismo , Masculino , Fase I de la Desintoxicación Metabólica , Fase II de la Desintoxicación Metabólica , Ratones , Ratones Endogámicos C57BL , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA