Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 30(11): 103814, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37841664

RESUMEN

Ascariasis and intestinal parasitic nematodes are the leading cause of mass mortality infecting many people across the globe. In light of the various deleterious side effects of modern chemical-based allopathic drugs, our preferences have currently shifted towards the use of traditional plant-based drugs or botanicals for treating diseases. The defensive propensities in the botanicals against parasites have probably evolved during their co-habitation with parasites, humans and plants in nature and hence their combative interference in one another's defensive mechanisms has occurred naturally ultimately being very effective in treating diseases. This article broadly outlines the utility of plant-based compounds or botanicals prepared from various medicinal herbs that have the potential to be developed as effective therapies against the important parasites causing ascariasis and intestinal hookworm infections leading to ascariasis & infections and thereby human mortality, wherein allopathic treatments are less effective and causes enormous side-effects.

2.
World J Microbiol Biotechnol ; 39(6): 142, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004584

RESUMEN

Mosquitoes are infectious vectors for a wide range of pathogens and parasites thereby transmitting several diseases including malaria, dengue, Zika, Japanese encephalitis and chikungunya which pose a major public health concern. Mostly synthetic insecticides are usually applied as a primary control strategy to manage vector-borne diseases. However excessive and non-judicious usage of such chemically derived insecticides has led to serious environmental and health issues owing to their biomagnification ability and increased toxicity towards non-target organisms. In this context, many such bioactive compounds originating from entomopathogenic microbes serve as an alternative strategy and environmentally benign tool for vector control. In the present paper, the entomopathogenic fungus, Lecanicillium lecanii (LL) was processed to make the granules. Developed 4% LL granules have been characterized using the technique of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The developed formulation was also subjected to an accelerated temperature study at 40 °C and was found to be stable for 3 months. Further, GCMS of the L. lecanii was also performed to screen the potential biomolecules present. The developed formulation was found to be lethal against Anopheles culicifacies with an LC50 value of 11.836 µg/mL. The findings from SEM and histopathology also substantiated the mortality effects. Further, the SEM EDX (energy dispersive X-ray) studies revealed that the treated larvae have lower nitrogen content which is correlated to a lower level of chitin whereas the control ones has higher chitin content and healthy membranes. The developed LL granule formulation exhibited high toxicity against Anopheles mosquitoes. The granule formulations can be used as an effective biocontrol strategy against malaria-causing mosquitoes.


Asunto(s)
Anopheles , Insecticidas , Malaria , Infección por el Virus Zika , Virus Zika , Animales , Insecticidas/farmacología , Insecticidas/química , Mosquitos Vectores , Malaria/prevención & control , Larva , Extractos Vegetales/química , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA