Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Phytoremediation ; 25(12): 1656-1668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855239

RESUMEN

Microbes have shown potential for the bioremediation of tannery waste polluted soil. During our previous study, it was observed that heavy metal resistant Burkholderia cepacia CS8 augmented growth and phytoremediation capability of an ornamental plant. Objective of the present research work was to evaluate the capability of B. cepacia CS8 assisted Calendula officinalis plants for the phytoremediation of tannery solid waste (TSW) polluted soil. The TSW treatment significantly reduced growth attributes and photosynthetic pigments in C. officinalis. However, supplementation of B. cepacia CS8 which exhibited substantial tolerance to the TSW amended soil, augmented growth traits, carotenoid, proline, and antioxidant enzymes level in C. officinalis under toxic and nontoxic regimes. Inoculation of B. cepacia CS8 augmented plant growth (shoot length 13%, root length 11%), physiological attributes (chlorophyll a 14%, chlorophyll b 17%), antioxidant enzyme activities (peroxidase 24%, superoxide dismutase 31% and catalase 19%), improved proline 36%, phenol 32%, flavonoids 14% and declined malondialdehyde (MDA) content 15% and hydrogen peroxide (H2O2) level 12% in C. officinalis at TSW10 stress compared with relevant un-inoculated plants of TSW10 treatment. Moreover, B. cepacia CS8 application enhanced labile metals in soil and subsequent metal uptake, such as Cr 19%, Cd 22%, Ni 35%, Fe 18%, Cu 21%, Pb 34%, and Zn 30%, respectively in C. officinalis plants subjected to TSW10 stress than that of analogous un-inoculated treatment. Higher plant stress tolerance and improved phytoremediation potential through microbial inoculation will assist in the retrieval of agricultural land in addition to the renewal of native vegetation.


During the current study, it was observed that combination of Calendula officinalis and metal tolerant Burkholderia cepacia CS8 not only improved plant growth but also helped phyto-extraction of pollutants present in the tannery solid waste polluted soil. According to our information, research work describing the phytoremediation potential of native metal tolerant microbes and ornamental plants has not been reported in Pakistan.


Asunto(s)
Burkholderia cepacia , Calendula , Metales Pesados , Contaminantes del Suelo , Antioxidantes , Clorofila A , Biodegradación Ambiental , Residuos Sólidos , Peróxido de Hidrógeno , Suelo , Contaminantes del Suelo/análisis
2.
Physiol Mol Biol Plants ; 28(11-12): 2099-2110, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36573149

RESUMEN

Tannery industries discharge a high concentration of chromium (Cr) along with other heavy metals, which are hazardous for all life forms. With increasing shortage of freshwater, tannery effluent is frequently used for crop an irrigation, causing damage to plants' health. In order to address this challenge, amino acid chelate fertilizer was used to investigate the impact on wheat crops against tannery waste water. Tannery wastewater (TW) was used at different levels such as 0%, 25%, 50%, and 100% with an amendment of foliar Zn-lysine (Zn-lys) at30 mg/L. This research highlighted the positive correlation of Zn-lysine on the morpho-physiological, biochemical, and gas exchange traits under different levels of tannery wastewater. The findings of this study showed that the application of Cr-rich tannery wastewater at different treatment levels resulted in a significant reduction in plant height (23%, 31%, and 36%), the number of tillers (21%, 30%, and 43%), spike (19%, 36%, and 55%) and dry weight (DW) of grains (10%, 25%, and 49%) roots DW (17%, 41%, 56%), and shoots DW (22%, 32%, and 47%) as compared to control. Foliar-applied Zn-lys positively enhanced photosynthetic attributes, antioxidant enzymes activities and gas exchange traits by reducing the oxidative stress alone and under Cr stress. The concentration of Cr in roots (21%, 37%, 38%) and shoots (11%, 36%, 37%) was reduced by the foliar application of Zn-lys at different treatment levels. These findings conclude that Zn-lys served as a protector for the growth and development of wheat and has an incredible potential to inhibit the phytotoxicity induced by excess Cr. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01265-6.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA