Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ISME J ; 13(7): 1883-1889, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30936421

RESUMEN

Microbes in the intestines of mammals degrade dietary glycans for energy and growth. The pathways required for polysaccharide utilization are functionally diverse; moreover, they are unequally dispersed between bacterial genomes. Hence, assigning metabolic phenotypes to genotypes remains a challenge in microbiome research. Here we demonstrate that glycan uptake in gut bacteria can be visualized with fluorescent glycan conjugates (FGCs) using epifluorescence microscopy. Yeast α-mannan and rhamnogalacturonan-II, two structurally distinct glycans from the cell walls of yeast and plants, respectively, were fluorescently labeled and fed to Bacteroides thetaiotaomicron VPI-5482. Wild-type cells rapidly consumed the FGCs and became fluorescent; whereas, strains that had deleted pathways for glycan degradation and transport were non-fluorescent. Uptake of FGCs, therefore, is direct evidence of genetic function and provides a direct method to assess specific glycan metabolism in intestinal bacteria at the single cell level.


Asunto(s)
Bacteroides thetaiotaomicron/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos de la Dieta/metabolismo , Microbioma Gastrointestinal , Genoma Bacteriano/genética , Polisacáridos/metabolismo , Bacteroides thetaiotaomicron/genética , Pared Celular/química , Fluorescencia , Intestinos/microbiología , Pectinas/metabolismo
2.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255254

RESUMEN

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Asunto(s)
Bacteroides/metabolismo , Colon/microbiología , Dieta , Pectinas/metabolismo , Polisacáridos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Genes Bacterianos/genética , Glicósido Hidrolasas , Ácidos Hexurónicos , Humanos , Mutagénesis Sitio-Dirigida , Células Vegetales/metabolismo
3.
Nature ; 544(7648): 65-70, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28329766

RESUMEN

The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.


Asunto(s)
Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/metabolismo , Biocatálisis , Tracto Gastrointestinal/microbiología , Glicósido Hidrolasas/metabolismo , Pectinas/química , Pectinas/metabolismo , Bacteroides thetaiotaomicron/crecimiento & desarrollo , Boratos/química , Boratos/metabolismo , Dominio Catalítico , Microbioma Gastrointestinal , Glicósido Hidrolasas/química , Glicósido Hidrolasas/clasificación , Humanos , Modelos Moleculares , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA