RESUMEN
BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.
Asunto(s)
Antihelmínticos , Combretum , Helmintos , Nematodos , Proantocianidinas , Trichostrongyloidea , Animales , Humanos , Combretum/química , Proantocianidinas/farmacología , Proantocianidinas/química , Larva , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antihelmínticos/farmacología , Rumiantes , Flavonoides/farmacología , Fitoquímicos/farmacologíaRESUMEN
Aim: Onchocerciasis is an endemic parasitic disease in sub-Saharan Africa that significantly impacts animal and human health. In Northern Cameroon, medicinal plants from the Combretum genus are used for onchocerciasis traditional treatment although there is no scientific evidence of their antifilarial potential. This study evaluates the in vitro macro- and microfilaricidal properties of water extracts from Combretum nigricans in Onchocerca ochengi. Material and Methods. O. ochengi microfilariae and adult male worms were recovered from cowhide fragments. Oxidative stress indicators and motility tests were used to assess the filaricidal impact. Female albino rats were used to test for acute toxicity. The contents of secondary metabolites were quantified. Results: The bark aqueous extract was more active on macrofilariae at 1 mg/mL for 24 h (100%) than the leaf (63.9%) and root (75%) extracts at the same concentration. Likewise, a stronger microfilaricidal effect was found with this extract at 0.5 mg/mL for 1 h (100%) compared to root and leaf extracts. The dose-response effect with the bark extract gave an inhibitory concentration 50 (IC50) of 351 µg/mL vs. 113 µg/mL for flubendazole after 24 h incubation, while the microfilaricidal efficacy revealed an IC50 of 158.7 µg/mL vs. 54.09 µg/mL for ivermectin after one-hour incubation. Examining stress indicators on parasite homogenates showed that macrofilaricidal activity is associated with a significant increase in nitric oxide, glutathione, and malondialdehyde generation and a decrease in catalase activity. At 2000 mg/kg, rats showed no harm. The phytochemical investigation revealed that the barks contained more phenolic acids, condensed tannins, flavonoids, and saponins than the leaves (p < 0.001). Conclusion: These findings support C. nigricans' antifilarial activity and identify oxidative stress indicators as prospective treatment targets in O. ochengi. It would be interesting to conduct in vivo studies to understand their antifilarial activity better.
RESUMEN
PURPOSE: Onchocerciasis is a neglected tropical disease that remains endemic in sub-Saharan African countries. Unfortunately, only a few microfilaricidal agents have been approved so far. This study aimed to assess the in vitro macro and microfilaricidal potentialities of the hydro-methanolic extracts of the different powdery fractions of Khaya senegalensis against Onchocerca ochengi. METHODS: Adult male worms and microfilariae (mf) of O. ochengi were isolated from cowhides in Ngaoundere II, Cameroon. Parasites were incubated for 4 h (mf) or 48 h (adult worms) in RPMI-1640 medium in the presence or absence of ivermectin, flubendazole, or hydro-methanolic extracts of different plant powdery fractions obtained by controlled differential sieving. The filaricidal effect was evaluated using motility (mfs) and mortality tests (worms) and oxidative stress parameters. Cytotoxicity and acute toxicity tests were performed on monkey-derived kidney cell lines (LLC-MK2) and Swiss albino mice, respectively, and selectivity indexes were determined. Phytochemical screening was also carried out using high-performance liquid chromatography/UV (HPLC/UV), molecular networking, and through quantification of phenolic contents. RESULTS: The hydro-methanolic extracts of 0-63 µm fractions from leaves and barks exhibited the strongest macrofilaricidal activities with lethal concentrations 50 of 162.4 and 208.8 µg/mL respectively versus 22.78 µg/mL for flubendazole. These two fractions also showed the fastest microfilaricidal activities (T1/2 of 1 h), although it was low when compared to ivermectin (T1/2 < 1 h). Their macrofilaricidal effects were accompanied by a significant inhibition of nitric oxide secretion and a significant increase of glutathione and catalase activity compared to the untreated group. However, no effect was found on superoxide dismutase activity, the GABAergic and glutamatergic receptors. Although neither extract was toxic to Swiss mice until a dose of 2000 mg/kg body weight, the 0-63 µm leaf fraction hydro-methanolic extract was selectively more effective on worms than bark extract (SI = 1.28 versus 0.34). Both extracts were found to contain some flavonoids including procyanidin-, rutin-, myricetin-, and naringenin derivatives as well as new unknown compounds. However, the total polyphenol, flavonoid and tannin contents of the leaf extract were significantly greater (P < 0.05) than that of the bark extract. CONCLUSION: These results support the anti-filarial effect of K. senegalensis leaves and highlight stress oxidative markers as new therapeutic targets in O. ochengi. Further, in vivo experiments are required in understanding their anti-parasitic properties, and testing combinations of fine fractions.
Asunto(s)
Meliaceae , Onchocerca , Ratones , Animales , Ivermectina/farmacología , Extractos Vegetales , Metanol/farmacologíaRESUMEN
Background: S. setigera is widely used in traditional medicine throughout the world. Ethnobotanical surveys have revealed its use to handle diabetes. This present research investigated the antioxidant potential and improvement activities of S. setigera Delile on insulin resistance in type 2 diabetic rats. Methods: Male rats fed high-fat diet for 6 weeks followed by a single-dose intraperitoneal injection of streptozotocin (35 mg/kg) induced hyperglycemia. 72 hours after injection of streptozotocin, diabetic rats received treatment for 21 days. Fasting blood glucose was measured. Serum biochemical and hepatic biomarkers were evaluated. A hepatic histological study was performed. Oxidative stress biomarkers were assessed in liver. Results: Doses of 200 and 400 mg/kg reduced the blood glucose with the reduction index of 53.75 and 62.1%, respectively. There was also good improvement in lipid profile and insulin. The dose of 400 mg/kg better reduced subcutaneous fat mass with a difference in reduction index (1.5 to 5.8%). The extract resulted in a decrease in malondialdehyde levels and an increase in catalase activities. The extract showed significant inhibitory potential towards α-amylase 18.78% to 55.91% and α-glucosidase 23.91% to 67.76%. Conclusion: S. setigera extract could thus reverse insulin resistance and oxidative stress in type 2 diabetic rats induced.
RESUMEN
Onchocerciasis is a filarial vector borne disease which affects several million people mostly in Africa. The therapeutic approach of its control was based on a succession of drugs which always showed limits. The last one: ivermectin is not the least. It was shown to be only microfilaricidal and induced resistance to the human parasite Onchocerca volvulus. The approach using medicinal plants used in traditional medicine is a possible alternative method to cure onchocerciasis. Onchocerca ochengi and Onchocerca gutturosa are the parasite models used to assess anthelmintic activity of potentially anthelmintic plants. Numerous studies assessed the in vitro and/or in vivo anthelmintic activity of medicinal plants. Online electronic databases were consulted to gather publications on in vitro and in vivo studies of anti-Onchocerca activity of plants from 1990 to 2017. Globally, 13 plant families were investigated for anti-Onchocerca activity in 13 studies. The most active species were Anacardium occidentale, Euphorbia hirta and Acacia nilotica each with an LC50 value of 2.76, 6.25 and 1.2 µg/mL, respectively. Polycarpol, voacamine, voacangine, ellagic acid, gallic acid, gentisic acid, 3-O-acetyl aleuritolic acid and (-)-epigallocatechin 3-O-gallate were the isolated plant compounds with anti-Onchocerca activity. Most of the assessed extract/compounds showed a good safety after in vivo acute toxicity assays and/or in vitro cytotoxicity test. The exception was the ethanol extract of Trichilia emetica, which killed completely and drastically mice at a dose of 3000 mg/kg. Several plant groups of compounds were shown active against Onchocerca sp. such as tannins, alkaloids, triterpenoids and essential oils. Nevertheless, none of the active compounds was subjected to clinical trial, to assessment of its diffusibility through nodular wall or its capability to induce genetic resistance of Onchocerca sp.
Asunto(s)
Antihelmínticos/farmacología , Onchocerca volvulus/efectos de los fármacos , Oncocercosis/tratamiento farmacológico , Extractos Vegetales/farmacología , Plantas Medicinales/química , Acacia/química , África , Anacardium/química , Animales , Euphorbia/química , Humanos , Ivermectina/farmacología , Onchocerca volvulus/aislamiento & purificación , Oncocercosis/parasitología , Taninos/análisisRESUMEN
BACKGROUND: Onchocerciasis is one of the tropical neglected diseases (NTDs) caused by the nematode Onchocerca volvulus. Control strategies currently in use rely on mass administration of ivermectin, which has marked activity against microfilariae. Furthermore, the development of resistance to ivermectin was observed. Since vaccine and safe macrofilaricidal treatment against onchocerciasis are still lacking, there is an urgent need to discover novel drugs. This study was undertaken to investigate the anthelmintic activity of Lophira lanceolata on the cattle parasite Onchocerca ochengi and the anthelmintic drug resistant strains of the free living nematode Caenorhabditis elegans and to determine the phytochemical profiles of the extracts and fractions of the plants. METHODS: Plant was extracted in ethanol or methanol-methylene chloride. O. ochengi, C. elegans wild-type and C. elegans drug resistant strains were cultured in RPMI-1640 and NGM-agar respectively. Drugs diluted in dimethylsulphoxide/RPMI or M9-Buffer were added in assays and monitored at 48 h and 72 h. Worm viability was determined by using the MTT/formazan colorimetric method. Polyphenol, tannin and flavonoid contents were determined by dosage of gallic acid and rutin. Acute oral toxicity was evaluated using Swiss albino mice. RESULTS: Ethanolic and methanolic-methylene chloride extracts killed O. ochengi with LC50 values of 9.76, 8.05, 6.39 µg/mL and 9.45, 7.95, 6.39 µg/mL respectively for leaves, trunk bark and root bark after 72 h. The lowest concentrations required to kill 50% of the wild-type of C. elegans were 1200 and 1890 µg/mL with ethanolic crude extract, 1000 and 2030 µg/mL with MeOH-CH2Cl2 for root bark and trunk bark of L. lanceolata, respectively after 72 h. Leave extracts of L. lanceolata are lethal to albendazole and ivermectin resistant strains of C. elegans after 72 h. Methanol/methylene chloride extracted more metabolites. Additionally, extracts could be considered relatively safe. CONCLUSION: Ethanolic and methanolic-methylene chloride crude extracts and fractions of L. lanceolata showed in vitro anthelmintic activity. The extracts and fractions contained polyphenols, tannins, flavonoids and saponins. The mechanism of action of this plant could be different from that of albendazole and ivermectin. These results confirm the use of L. lanceolata by traditional healers for the treatment of worm infections.
Asunto(s)
Antihelmínticos/farmacología , Caenorhabditis elegans , Infecciones por Nematodos/parasitología , Ochnaceae/química , Onchocerca , Extractos Vegetales/farmacología , Albendazol/farmacología , Animales , Bovinos , Resistencia a Medicamentos , Flavonoides/análisis , Flavonoides/farmacología , Ivermectina/farmacología , Ratones , Infecciones por Nematodos/veterinaria , Oncocercosis/parasitología , Oncocercosis/veterinaria , Fitoterapia , Corteza de la Planta , Extractos Vegetales/química , Raíces de Plantas , Tallos de la Planta , Polifenoles/análisis , Polifenoles/farmacología , Saponinas/análisis , Saponinas/farmacología , Taninos/análisis , Taninos/farmacologíaRESUMEN
Acacia nilotica fruits with high tannin content are used in the northern parts of Cameroon as anti-filarial remedies by traditional healers. In this study, the hydro-alcoholic fruit extract (crude extract (CE)) and, one of the main constituents in its most active fractions, (+)-catechin-3-O-gallate (CG), as well as four related proanthocyanidins, (-)-epicatechin-3-O-gallate (ECG), (+)-gallocatechin (GC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-O-gallate (EGCG), were assessed for their potential in vitro anthelmintic properties against the free-living model organism Caenorhabditis elegans and against the cattle filarial parasite Onchocerca ochengi. Worms were incubated in the presence of different concentrations of fruit extract, fractions and pure compounds. The effects on mortality were monitored after 48 h. The plant extract and all of the pure tested compounds were active against O. ochengi (LC50 ranging from 1.2 to 11.5 µg/mL on males) and C. elegans (LC50 ranging from 33.8 to 350 µg/mL on wild type). While high LC50 were required for the effects of the compounds on C. elegans, very low LC50 were required against O. ochengi. Importantly, tests for acute oral toxicity (lowest dose: 10 mg/kg) in Wistar rats demonstrated that crude extract and pure compounds were non-toxic and safe to use. Additionally, the results of cytotoxicity tests with the Caco-2 cell line (CC50 ranging from 47.1 to 93.2 µg/mL) confirmed the absence of significant toxicity of the crude extract and pure compounds. These results are in good accordance with the use of A. nilotica against nematode infections by traditional healers, herdsmen and pastoralists in Cameroon.
Asunto(s)
Acacia/química , Caenorhabditis/efectos de los fármacos , Onchocerca/efectos de los fármacos , Proantocianidinas/química , Proantocianidinas/farmacología , Alcoholes/química , Animales , Antihelmínticos/química , Células CACO-2 , Caenorhabditis elegans , Catequina/análogos & derivados , Catequina/química , Bovinos , Frutas/química , Humanos , Masculino , Infecciones por Nematodos/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Taninos/química , Cicatrización de Heridas/efectos de los fármacosRESUMEN
The ethanolic extract of Anogeissus leiocarpus was assessed for the in vitro anthelmintic activity by using the cattle parasite nematode Onchocerca ochengi as well as levamisole-, ivermectin- and albendazole-resistant mutant strains of the free-living nematode Caenorhabditis elegans, a model organism for research on nematode parasites. Worms were incubated in the presence of different concentrations of the plant extract and effects on survival were monitored after each 12 h to 96 h. The A. leiocarpus extract affected O. ochengi microfilaria, adults, and C. elegans wild-type worms with LC(50) values of 0.06 mg/ml, 0.09 mg/ml after 24h and 0.44 mg/ml after 48 h, respectively. Remarkably, the efficacy of the plant extract was not significantly altered in the ivermectin- and levamisole-resistant C. elegans mutant strains lev-1(e211), glc-2(ok1047), lev-9(x16) and avr-14(ad1302), avr-15(ad1051), glc-1(pk54). The albendazole resistant strain ben-1(e1880) exhibited a moderate increase of the LC(50) value to 1.5mg/ml after 48 h. These results are in good accordance with the use of A. leiocarpus extract against nematode infections by traditional healers, herdsmen and pastoralists. Moreover, the data indicate that the plant extract could be used to treat nematode infections even in cases of drug resistance towards established anthelmintic drugs.
Asunto(s)
Antihelmínticos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Combretaceae/química , Onchocerca/efectos de los fármacos , Oncocercosis/parasitología , Extractos Vegetales/farmacología , Albendazol/farmacología , Animales , Caenorhabditis elegans/genética , Femenino , Ivermectina/farmacología , Levamisol/farmacología , Masculino , Mutación , Extractos Vegetales/químicaRESUMEN
The aim of the study was to screen 11 selected traditional medicinal plants from West Africa for their in vitro antiplasmodial activity in order to determine the activity of single and of combination of plant extracts and to examine the activity of isolated pure compounds. Ethanolic and aqueous extracts of the 11 selected plants and pure compounds from Phyllanthus muellerianus and Anogeissus leiocarpus were tested in vitro against Plasmodium falciparum 3D7. Proliferation inhibitory effects were monitored after 48 h. Among the plants and pure compounds investigated in this study, geraniin from P. muellerianus, ellagic, gentisic, and gallic acids from A. leiocarpus, and extracts from A. leiocarpus, P. muellerianus and combination of A. leiocarpus with P. muellerianus affected the proliferation of P. falciparum most potently. Significant inhibitory activity was observed in combination of A. leiocarpus with P. muellerianus (IC(50) = 10.8 µg/ml), in combination of A. leiocarpus with Khaya senegalensis (IC(50) = 12.5 µg/ml), ellagic acid (IC(50) = 2.88 µM), and geraniin (IC(50) = 11.74 µM). In general growth inhibition was concentration-dependent revealing IC(50) values ranging between 10.8 and -40.1 µg/ml and 2.88 and 11.74 µM for plant extracts and pure substances respectively. Comparison with literature sources of in vivo and in vitro toxicity data revealed that thresholds are up to two times higher than the determined IC(50) values. Thus, the present study suggests that geraniin from P. muellerianus; ellagic acid, gallic acid, and gentisic acid from A. leiocarpus; and combination of extracts from A. leiocarpus with either P. muellerianus or K. senegalensis could be a potential option for malaria treatment.
Asunto(s)
Antimaláricos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Plasmodium falciparum/efectos de los fármacos , Polifenoles/farmacología , África Occidental , Animales , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Eritrocitos , Humanos , Estructura Molecular , Extractos Vegetales/química , Polifenoles/químicaRESUMEN
The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the k(cat)/K(m) values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme 'thialysine N(epsilon)-acetyltransferase'.