Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37952692

RESUMEN

BACKGROUND: The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS: The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS: We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS: Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS: Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.


Asunto(s)
Corteza Motora , Adulto , Humanos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Inhibición Neural/fisiología , Potenciales Evocados Motores/fisiología , Ácido Glutámico/metabolismo , Estimulación Magnética Transcraneal/métodos , Ganglios Basales/diagnóstico por imagen , Ácido gamma-Aminobutírico/metabolismo
2.
Neurobiol Dis ; 174: 105881, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36202290

RESUMEN

Fragile-X syndrome (FXS) and Neurofibromatosis of type 1 (NF-1) are two monogenic disorders sharing neurobehavioral symptoms and pathophysiological mechanisms. Namely, preclinical models of both conditions show overactivity of the mTOR signaling pathway as well as GABAergic alterations. However, despite its potential clinical relevance for these disorders, the GABAergic system has not been systematically studied in humans. In the present study, we used an extensive transcranial magnetic stimulation (TMS) assessment battery in combination with magnetic resonance spectroscopy (MRS) to provide a comprehensive picture of the main inhibitory neurotransmitter system in patients with FXS and NF1. Forty-three participants took part in the TMS session (15 FXS, 10 NF1, 18 controls) and 36 in the MRS session (11 FXS, 14 NF1, 11 controls). Results show that, in comparison to healthy control participants, individuals with FXS and NF1 display lower GABA concentration levels as measured with MRS. TMS result show that FXS patients present increased GABAB-mediated inhibition compared to controls and NF1 patients, and that GABAA-mediated intracortical inhibition was associated with increased excitability specifically in the FXS groups. In line with previous reports, correlational analyses between MRS and TMS measures did not show significant relationships between GABA-related metrics, but several TMS measures correlated with glutamate+glutamine (Glx) levels assessed with MRS. Overall, these results suggest a partial overlap in neurophysiological alterations involving the GABA system in NF1 and FXS, and support the hypothesis that MRS and TMS assess different aspects of the neurotransmitter systems.


Asunto(s)
Síndrome del Cromosoma X Frágil , Corteza Motora , Neurofibromatosis 1 , Humanos , Inhibición Neural/fisiología , Ácido gamma-Aminobutírico/metabolismo , Estimulación Magnética Transcraneal , Neurofibromatosis 1/metabolismo
3.
Brain ; 140(1): 218-234, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007998

RESUMEN

Gilles de la Tourette syndrome is a hereditary, neuropsychiatric movement disorder with reported abnormalities in the neurotransmission of dopamine and γ-aminobutyric acid (GABA). Spatially focalized alterations in excitatory, inhibitory and modulatory neurochemical ratios within specific functional subdivisions of the basal ganglia, may lead to the expression of diverse motor and non-motor features as manifested in Gilles de la Tourette syndrome. Current treatment strategies are often unsatisfactory thus provoking the need for further elucidation of the underlying pathophysiology. In view of (i) the close spatio-temporal synergy exhibited between excitatory, inhibitory and modulatory neurotransmitter systems; (ii) the crucial role played by glutamate (Glu) in tonic/phasic dopaminergic signalling; and (iii) the interdependent metabolic relationship exhibited between Glu and GABA via glutamine (Gln); we postulated that glutamatergic signalling is related to the pathophysiology of Gilles de la Tourette syndrome. As such, we examined the neurochemical profile of three cortico-striato-thalamo-cortical regions in 37 well-characterized, drug-free adult patients and 36 age/gender-matched healthy control subjects via magnetic resonance spectroscopy at 3 T. To interrogate the influence of treatment on metabolite concentrations, spectral data were acquired from 15 patients undergoing a 4-week treatment with aripiprazole. Test-retest reliability measurements in 23 controls indicated high repeatability of voxel localization and metabolite quantitation. We report significant reductions in striatal concentrations of Gln, Glu + Gln (Glx) and the Gln:Glu ratio, and thalamic concentrations of Glx in Gilles de la Tourette syndrome in comparison to controls. ON-treatment patients exhibited no significant metabolite differences when compared to controls but significant increases in striatal Glu and Glx, and trends for increases in striatal Gln and thalamic Glx compared to baseline measurements. Multiple regression analysis revealed a significant negative correlation between (i) striatal Gln and actual tic severity; and (ii) thalamic Glu and premonitory urges. Our results indicate that patients with Gilles de la Tourette syndrome exhibit an abnormality in the flux of metabolites in the GABA-Glu-Gln cycle, thus implying perturbations in astrocytic-neuronal coupling systems that maintain the subtle balance between excitatory and inhibitory neurotransmission within subcortical nuclei.


Asunto(s)
Ganglios Basales/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Transmisión Sináptica , Tálamo/metabolismo , Síndrome de Tourette/metabolismo , Adolescente , Adulto , Anciano , Ganglios Basales/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tálamo/diagnóstico por imagen , Síndrome de Tourette/diagnóstico por imagen , Adulto Joven
4.
Elife ; 4: e08789, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26381352

RESUMEN

We previously demonstrated that network level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (Stagg et al., 2014). In this study, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 min of 1 mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex; these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.


Asunto(s)
Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa , Ácido gamma-Aminobutírico/análisis , Adulto , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
5.
Neuroimage ; 106: 15-20, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25463472

RESUMEN

Learning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009). Whether such effects occur with long-term training is less well established. In addition, the relationship between learning-related changes in functional connectivity and local inhibition, and their modulation by practice, has not previously been tested. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) to assess functional connectivity and MR spectroscopy to quantify GABA in primary motor cortex (M1) before and after a 6 week regime of juggling practice. Participants practiced for either 30 min (high intensity group) or 15 min (low intensity group) per day. We hypothesized that different training regimes would be reflected in distinct changes in brain connectivity and local inhibition, and that correlations would be found between learning-induced changes in GABA and functional connectivity. Performance improved significantly with practice in both groups and we found no evidence for differences in performance outcomes between the low intensity and high intensity groups. Despite the absence of behavioral differences, we found distinct patterns of brain change in the two groups: the low intensity group showed increases in functional connectivity in the motor network and decreases in GABA, whereas the high intensity group showed decreases in functional connectivity and no significant change in GABA. Changes in functional connectivity correlated with performance outcome. Learning-related changes in functional connectivity correlated with changes in GABA. The results suggest that different training regimes are associated with distinct patterns of brain change, even when performance outcomes are comparable between practice schedules. Our results further indicate that learning-related changes in resting-state network strength in part reflect GABAergic plastic processes.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adaptación Fisiológica/fisiología , Conectoma/métodos , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Red Nerviosa/fisiología , Neurotransmisores/metabolismo , Adulto Joven
6.
Neurorehabil Neural Repair ; 29(3): 278-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25055837

RESUMEN

BACKGROUND AND OBJECTIVE: γ-Aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the brain and is important in motor learning. We aimed to measure GABA content in primary motor cortex poststroke (using GABA-edited magnetic resonance spectroscopy [MRS]) and in relation to motor recovery during 2 weeks of constraint-induced movement therapy (CIMT). METHODS: Twenty-one patients (3-12 months poststroke) and 20 healthy subjects were recruited. Magnetic resonance imaging structural T1 and GABA-edited MRS were performed at baseline and after CIMT, and once in healthy subjects. GABA:creatine (GABA:Cr) ratio was measured by GABA-edited MRS. Motor function was measured using Wolf Motor Function Test (WMFT). RESULTS: Baseline comparison between stroke patients (n = 19) and healthy subjects showed a significantly lower GABA:Cr ratio in stroke patients (P < .001) even after correcting for gray matter content in the voxel (P < .01) and when expressing GABA relative to N-acetylaspartic acid (NAA; P = .03). After 2 weeks of CIMT patients improved significantly on WMFT, but no consistent change across the group was observed for the GABA:Cr ratio (n = 17). However, the extent of improvement on WMFT correlated significantly with the magnitude of GABA:Cr changes (P < .01), with decreases in GABA:Cr ratio being associated with better improvements in motor function. CONCLUSIONS: In patients 3 to 12 months poststroke, GABA levels are lower in the primary motor cortex than in healthy subjects. The observed association between GABA and recovery warrants further studies on the potential use of GABA MRS as a biomarker in poststroke recovery.


Asunto(s)
Terapia por Ejercicio , Corteza Motora/química , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/fisiopatología , Ácido gamma-Aminobutírico/análisis , Adulto , Anciano , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Actividad Motora , Recuperación de la Función
7.
Elife ; 3: e01465, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24668166

RESUMEN

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these 'resting state networks' is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies. DOI: http://dx.doi.org/10.7554/eLife.01465.001.


Asunto(s)
Corteza Motora/metabolismo , Red Nerviosa/metabolismo , Inhibición Neural , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Anciano , Mapeo Encefálico/métodos , Regulación hacia Abajo , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/citología , Red Nerviosa/citología , Estimulación Transcraneal de Corriente Directa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA