Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytother Res ; 38(2): 797-838, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38083970

RESUMEN

Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.


Asunto(s)
Fármacos Antiobesidad , Obesidad , Humanos , Animales , Obesidad/tratamiento farmacológico , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico
2.
J Genet Genomics ; 50(4): 233-240, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36773723

RESUMEN

Dietary protein (P) and carbohydrate (C) have a major impact on the sweet taste sensation. However, it remains unclear whether the balance of P and C influences the sweet taste sensitivity. Here, we use the nutritional geometry framework (NGF) to address the interaction of protein and carbohydrates on sweet taste using Drosophila as a model. Our results reveal that high-protein, low-carbohydrate (HPLC) diets sensitize to sweet taste and low-protein, high-carbohydrate (LPHC) diets desensitize sweet taste in both male and female flies. We further investigate the underlying mechanisms of the effects of two diets on sweet taste using RNA sequencing. When compared to the LPHC diet, the mRNA expression of genes involved in the metabolism of glycine, serine, and threonine is significantly upregulated in the HPLC diet group, suggesting these amino acids may mediate sweet taste perception. We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine. Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.


Asunto(s)
Percepción del Gusto , Gusto , Animales , Masculino , Femenino , Percepción del Gusto/genética , Sacarosa/farmacología , Drosophila/genética , Carbohidratos/farmacología , Proteínas en la Dieta/farmacología , Serina/farmacología , Treonina/farmacología
3.
Neuropeptides ; 87: 102149, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33882337

RESUMEN

The central and peripheral neuropeptide Y (NPY) system is critically involved in feeding and energy homeostasis control. Disease conditions as well as aging can lead to reduced functionality of the NPY system and boosting it represents a promising option to improve health outcomes in these situations. Here we show that Ninjin-yoeito (NYT), a Japanese kampo medicine comprising twelve herbs, and known to be effective to treat anorexia and frailty, mediates part of its action via NPY/peptide YY (PYY) related pathways. Especially under negative energy homeostasis conditions NYT is able to promote feeding and reduces activity to conserve energy. These effects are in part mediated via signalling through the NPY system since lack of Y4 receptors or PYY leading to modification in these responses highlighting the possibility for combination treatment to improve aging related conditions on energy homeostasis control.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Ingestión de Energía/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neuropéptido Y/metabolismo , Péptido YY/deficiencia , Receptores de Neuropéptido Y/deficiencia , Animales , Estudios Cruzados , Drosophila melanogaster , Femenino , Homeostasis , Humanos , Masculino , Medicina Kampo , Metabolismo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptido YY/genética , Péptido YY/fisiología , Distribución Aleatoria , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/fisiología
4.
Cell Rep ; 21(13): 3794-3806, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281828

RESUMEN

Neurotransmission is a tightly regulated Ca2+-dependent process. Upon Ca2+ influx, Synaptotagmin1 (Syt1) promotes fusion of synaptic vesicles (SVs) with the plasma membrane. This requires regulation at multiple levels, but the role of metabolites in SV release is unclear. Here, we uncover a role for isocitrate dehydrogenase 3a (idh3a), a Krebs cycle enzyme, in neurotransmission. Loss of idh3a leads to a reduction of the metabolite, alpha-ketoglutarate (αKG), causing defects in synaptic transmission similar to the loss of syt1. Supplementing idh3a flies with αKG suppresses these defects through an ATP or neurotransmitter-independent mechanism. Indeed, αKG, but not glutamate, enhances Syt1-dependent fusion in a reconstitution assay. αKG promotes interaction between the C2-domains of Syt1 and phospholipids. The data reveal conserved metabolic regulation of synaptic transmission via αKG. Our studies provide a synaptic role for αKG, a metabolite that has been proposed as a treatment for aging and neurodegenerative disorders.


Asunto(s)
Ciclo del Ácido Cítrico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/fisiología , Isocitrato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Transmisión Sináptica , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Drosophila melanogaster/ultraestructura , Ácidos Cetoglutáricos/metabolismo , Larva/metabolismo , Mitocondrias/ultraestructura , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Unión Proteica , Dominios Proteicos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Sinaptotagminas/química , Sinaptotagminas/metabolismo
5.
Cell Metab ; 24(1): 75-90, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27411010

RESUMEN

Non-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception, and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together, our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Ayuno , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Sacarosa/análogos & derivados , Adenilato Quinasa/metabolismo , Animales , Apetito/efectos de los fármacos , Dopamina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Ingestión de Energía/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Homeostasis/efectos de los fármacos , Hambre/efectos de los fármacos , Insulina/metabolismo , Masculino , Neuronas/efectos de los fármacos , Octopamina/metabolismo , Receptores de Superficie Celular/metabolismo , Sacarosa/farmacología , Edulcorantes/farmacología , Gusto/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA