Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-26345660

RESUMEN

It has been shown that curcumin (CUR), a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM-) induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2)-related factor 2 (Nrf2) nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h) during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day) was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.

2.
Mol Cell Biochem ; 406(1-2): 183-97, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25971372

RESUMEN

The potential of C-phycocyanin (C-PC) to prevent cisplatin (CP)-induced kidney mitochondrial dysfunction was determined in CD-1 male mice. The CP-induced mitochondrial dysfunction was characterized by ultrastructural abnormalities and by decrease in the following parameters in isolated kidney mitochondria: adenosine diphosphate (ADP)-induced oxygen consumption (state 3), respiratory control ratio, ADP/oxygen (ADP/O) ratio, adenosine triphosphate synthesis, membrane potential, calcium retention, glutathione (GSH) content, and activity of respiratory complex I, aconitase, catalase, and GSH peroxidase. These mitochondria also showed increase in hydrogen peroxide production, malondialdehyde, and 3-nitrotyrosine protein adducts content. The above-described changes, as well as CP-induced nephrotoxicity, were attenuated in mice pretreated with a single injection of C-PC. Our data suggest that the attenuation of mitochondrial abnormalities is involved in the protective effect of C-PC against CP-induced nephrotoxicity. This is the first demonstration that C-PC pretreatment prevents CP-induced mitochondrial dysfunction in mice.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Mitocondrias/efectos de los fármacos , Estrés Oxidativo , Ficocianina/farmacología , Adenosina Trifosfato/biosíntesis , Animales , Nitrógeno de la Urea Sanguínea , Calcio/metabolismo , Catalasa/metabolismo , Creatinina/sangre , Evaluación Preclínica de Medicamentos , Transporte de Electrón , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Masculino , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Consumo de Oxígeno , Superóxido Dismutasa/metabolismo
3.
Phytomedicine ; 20(10): 775-9, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23643094

RESUMEN

It has been shown that the pretreatment with nordihydroguaiaretic acid (NDGA), a lignan with direct and indirect antioxidant properties, protects against the ischemia-reperfusion (I/R)-induced renal oxidant damage. Although it has been shown that NDGA induces Nrf2 nuclear translocation in renal epithelial LLC-PK1 cells in culture, it is unknown if NDGA may induce Nrf2 translocation in vivo. In this work was explored if NDGA is able to induce in vivo Nrf2 nuclear translocation in kidneys of rats submitted to uni-nephrectomy (U-NX) or I/R injury. Four groups of male Wistar rats were used: U-NX, NDGA, I/R, and I/R+NDGA. NDGA was injected i.p. (10mg/kg/day) starting 48 h before I/R. Kidney samples were obtained at 3 h of reperfusion after to measure Nrf2 translocation. Additional groups of rats were studied at 24 h of reperfusion to measure histological damage and apoptosis. NDGA was able to induce Nrf2 translocation in vivo in kidneys of rats submitted to both U-NX and I/R injury and to protect against renal histological damage and apoptosis. It is concluded that the pretreatment of NDGA is able to induce in vivo nuclear Nrf2 translocation in kidney of rats suggesting that this may be involved in the renoprotection against I/R.


Asunto(s)
Lesión Renal Aguda/prevención & control , Apoptosis/efectos de los fármacos , Masoprocol/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Señales de Localización Nuclear/biosíntesis , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Masculino , Masoprocol/uso terapéutico , Ratas , Ratas Wistar , Daño por Reperfusión/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-23662110

RESUMEN

Sulforaphane (SFN), an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM) is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl- ß -D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity) and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA