Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2583, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972516

RESUMEN

Quantitative micromechanical characterization of single cells and multicellular tissues or organisms is of fundamental importance to the study of cellular growth, morphogenesis, and cell-cell interactions. However, due to limited manipulation capabilities at the microscale, systems used for mechanical characterizations struggle to provide complete three-dimensional coverage of individual specimens. Here, we combine an acoustically driven manipulation device with a micro-force sensor to freely rotate biological samples and quantify mechanical properties at multiple regions of interest within a specimen. The versatility of this tool is demonstrated through the analysis of single Lilium longiflorum pollen grains, in combination with numerical simulations, and individual Caenorhabditis elegans nematodes. It reveals local variations in apparent stiffness for single specimens, providing previously inaccessible information and datasets on mechanical properties that serve as the basis for biophysical modelling and allow deeper insights into the biomechanics of these living systems.


Asunto(s)
Imagenología Tridimensional/métodos , Micromanipulación/instrumentación , Micromanipulación/métodos , Microscopía de Fuerza Atómica/métodos , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Acústica , Animales , Fenómenos Biomecánicos , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/citología , Pared Celular/ultraestructura , Lilium/citología , Microscopía Electrónica de Rastreo , Morfogénesis , Células Vegetales , Polen/citología , Polen/ultraestructura
2.
Int J Hyperthermia ; 37(2): 77-83, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32672124

RESUMEN

More than 130-year ago, Sir Victor Horsley delivered a landmark address to the British Medical Association, in which he described successful localization and resection of an epileptogenic focus resulting in seizure freedom for the patient. Several important steps in epilepsy surgery have been achieved since, including resection techniques such as anterior temporal lobectomy and selective amygdalohippocampectomy, both resulting in 70-80% seizure freedom and distinct differences in neuropsychological outcomes. The most recent addition to techniques for epilepsy surgery is minimally invasive thermal therapy. Significant advances in imaging technology and thermal ablation have opened a novel avenue for epilepsy treatment, permitting surgical intervention with seizure-freedom rates approaching the success of traditional methods but with reduced invasiveness, blood loss and duration of postoperative hospital stay. Here, we review recent advances on stereotactic ablation techniques focused on epilepsy surgery. Finally, we present emerging navigation techniques, which allow a higher degree of freedom. The described technologies render precise navigation of the ablation probe to avoid critical structures along the trajectory path and open novel pathways to further minimize invasiveness and improve safety and efficacy. Improve safety and efficacy.


Asunto(s)
Epilepsia , Hipertermia Inducida , Terapia por Láser , Epilepsia/cirugía , Humanos , Rayos Láser , Resultado del Tratamiento
3.
Phys Chem Chem Phys ; 17(20): 13274-9, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25920767

RESUMEN

Soft-magnetic core-multishell Fe@C NWs-AAO nanocomposites were synthesized using anodization, electrodeposition and low-pressure chemical vapour deposition (CVD) at 900 °C. High chemical and mechanical stability is achieved by the conversion from amorphous to θ- and δ-Al2O3 phases above 600 °C. Moreover, the surface properties of the material evolve from bioactive, for porous AAO, to bioinert, for Fe@C NW filled AAO nanocomposite. Although the latter is not cytotoxic, cells do not adhere onto the surface of the magnetic nanocomposite, thus proving its anti-biofouling character.


Asunto(s)
Óxido de Aluminio/química , Incrustaciones Biológicas/prevención & control , Carbono/química , Hierro/química , Imanes/química , Nanocompuestos/química , Nanocables/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Estabilidad de Medicamentos , Propiedades de Superficie , Temperatura , Volatilización
4.
Plant Physiol ; 158(4): 1514-22, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22353572

RESUMEN

Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM's large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM's ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Especificidad de Órganos , Células Vegetales/fisiología , Fenómenos Biomecánicos/fisiología , Pared Celular/ultraestructura , Cebollas/ultraestructura , Epidermis de la Planta/ultraestructura , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA