Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241746

RESUMEN

Taraxaci folium and Matricariae flos plant extracts contain a wide range of bioactive compounds with antioxidant and anti-inflammatory effects. The aim of the study was to evaluate the phytochemical and antioxidant profile of the two plant extracts to obtain a mucoadhesive polymeric film with beneficial properties in acute gingivitis. The chemical composition of the two plant extracts was determined by high-performance liquid chromatography coupled with mass spectrometry. To establish a favourable ratio in the combination of the two extracts, the antioxidant capacity was determined by the method of reduction of copper ions Cu2+ from neocuprein and by reduction of the compound 1.1-diphenyl-2-2picril-hydrazyl. Following preliminary analysis, we selected the plant mixture Taraxaci folium/matricariae flos in the ratio of 1:2 (m/m), having an antioxidant capacity of 83.92% ± 0.02 reduction of free nitrogen radical of 1.1-diphenyl-2-2picril-hydrazyl reagent. Subsequently, bioadhesive films of 0.2 mm thickness were obtained using various concentrations of polymer and plant extract. The mucoadhesive films obtained were homogeneous and flexible, with pH ranging from 6.634 to 7.016 and active ingredient release capacity ranging from 85.94-89.52%. Based on in vitro analysis, the film containing 5% polymer and 10% plant extract was selected for in vivo study. The study involved 50 patients undergoing professional oral hygiene followed by a 7-day treatment with the chosen mucoadhesive polymeric film. The study showed that the film used helped accelerate the healing of acute gingivitis after treatment, with anti-inflammatory and protective action.


Asunto(s)
Antioxidantes , Gingivitis , Humanos , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/química
2.
Biomed Pharmacother ; 152: 113220, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35671583

RESUMEN

Given the risk of Candida albicans overgrowth in the gut, novel complementary therapies should be developed to reduce fungal dominancy. This study highlights the antifungal characteristics of a Bacillus subtilis-derived secondary metabolite, surfactin with high potential against C. albicans. Surfactin inhibited the growth of C. albicans following a 1-hour exposure, in addition to reduced adhesion and morphogenesis. Specifically, surfactin did not affect the level of reactive oxygen species but increased the level of reduced glutathione. Surprisingly, ethanol production was increased following 2 h of surfactin exposure. Surfactin treatment caused a significant reduction in intracellular iron, manganese and zinc content compared to control cells, whereas the level of copper was not affected. Alongside these physiological properties, surfactin also enhanced fluconazole efficacy. To gain detailed insights into the surfactin-related effects on C. albicans, genome-wide gene transcription analysis was performed. Surfactin treatment resulted in 1390 differentially expressed genes according to total transcriptome sequencing (RNA-Seq). Of these, 773 and 617 genes with at least a 1.5-fold increase or decrease in transcription, respectively, were selected for detailed investigation. Several genes involved in morphogenesis or related to metabolism (e.g., glycolysis, ethanol and fatty acid biosynthesis) were down-regulated. Moreover, surfactin decreased the expression of ERG1, ERG3, ERG9, ERG10 and ERG11 involved in ergosterol synthesis, whereas genes associated with ribosome biogenesis and iron metabolism and drug transport-related genes were up-regulated. Our data demonstrate that surfactin significantly influences the physiology and gene transcription of C. albicans, and could contribute to the development of a novel innovative complementary therapy.


Asunto(s)
Antifúngicos , Candida albicans , Antifúngicos/metabolismo , Antifúngicos/farmacología , Farmacorresistencia Fúngica , Ergosterol/metabolismo , Etanol/farmacología , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Pruebas de Sensibilidad Microbiana
3.
Molecules ; 27(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566001

RESUMEN

Philadelphus coronarius is a versatile plant and its use in folk medicine has a long tradition; however, scientifically, the medical utilization of the herb is a less explored research field. The aim of our study was to identify and determine the quantity of the bioactive compounds of both the leaf and the flower and prepare a lyophilized product of them, from which medical ointments were formulated, since the topical application of P. coronarius has also not been studied. In vitro drug release, texture analysis and biocompatibility experiments were carried out, as well as the investigation of microbiological, antioxidant and anti-inflammatory properties. According to our results the composition and the selected excipients of the ointments have a great impact on the drug release, texture and bioavailability of the preparation. During the microbiological testing, the P. coronarius leaf was effective against Escherichia coli and Staphylococcus aureus, but it did not significantly decrease IL-4 production when it was tested on HaCaT cells. P. coronarius is a promising herb, and its topical application in antimicrobial therapy can be a useful addition to modern medical therapy.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Flores , Pomadas , Extractos Vegetales/farmacología , Hojas de la Planta
4.
Molecules ; 25(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096785

RESUMEN

Natural products used in the treatment of acne vulgaris may be promising alternative therapies with fewer side effects and without antibiotic resistance. The objective of this study was to formulate creams containing Spirulina (Arthrospira) platensis to be used in acne therapy. Spirulina platensis belongs to the group of micro algae and contains valuable active ingredients. The aim was to select the appropriate nonionic surfactants for the formulations in order to enhance the diffusion of the active substance and to certify the antioxidant and antibacterial activity of Spirulina platensis-containing creams. Lyophilized Spirulina platensis powder (SPP) was dissolved in Transcutol HP (TC) and different types of nonionic surfactants (Polysorbate 60 (P60), Cremophor A6:A25 (CR) (1:1), Tefose 63 (TFS), or sucrose ester SP 70 (SP70)) were incorporated in creams as emulsifying agents. The drug release was evaluated by the Franz diffusion method and biocompatibility was tested on HaCaT cells. In vitro antioxidant assays were also performed, and superoxide dismutase (SOD) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays were executed. Antimicrobial activities of the selected compositions were checked against Staphylococcus aureus (S. aureus) and Cutibacteriumacnes (C. acnes) (formerly Propionibacterium acnes) with the broth microdilution method. Formulations containing SP 70 surfactant with TC showed the most favorable dissolution profiles and were found to be nontoxic. This composition also showed significant increase in free radical scavenger activity compared to the blank sample and the highest SOD enzyme activity was also detected after treatment with the cream samples. In antibacterial studies, significant differences were observed between the treated and control groups after an incubation time of 6 h.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Productos Biológicos/farmacología , Spirulina/química , Tensoactivos/farmacología , Acné Vulgar/microbiología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Materiales Biocompatibles/química , Materiales Biocompatibles/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Polvos , Propionibacteriaceae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Tensoactivos/química , Tensoactivos/aislamiento & purificación
5.
Molecules ; 22(10)2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29053620

RESUMEN

The most important components of Plantago lanceolata L. leaves are catalpol, aucubin, and acteoside (=verbascoside). These bioactive compounds possess different pharmacological effects: anti-inflammatory, antioxidant, antineoplastic, and hepatoprotective. The aim of this study was to protect Plantago lanceolata extract from hydrolysis and to improve its antioxidant effect using self-nano-emulsifying drug delivery systems (SNEDDS). Eight SNEDDS compositions were prepared, and their physical properties, in vitro cytotoxicity, and in vivo AST/ALT values were investigated. MTT cell viability assay was performed on Caco-2 cells. The well-diluted samples (200 to 1000-fold dilutions) proved to be non-cytotoxic. The acute administration of PL-SNEDDS compositions resulted in minor changes in hepatic markers (AST, ALT), except for compositions 4 and 8 due to their high Transcutol contents (80%). The non-toxic compositions showed a significant increase in free radical scavenger activity measured by the DPPH test compared to the blank SNEDDS. An indirect dissolution test was performed, based on the result of the DPPH antioxidant assay; the dissolution profiles of Plantago lancolata extract were statistically different from each SNEDDS. The anti-inflammatory effect of PL-SNEDDS compositions was confirmed by the ear inflammation test. For the complete examination period, all compositions decreased ear edema as compared to the positive (untreated) control. It can be concluded that PL-SNEDDS compositions could be used to deliver active natural compounds in a stable, efficient, and safe manner.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Enfermedades del Oído/tratamiento farmacológico , Edema/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Plantago/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Enfermedades del Oído/inducido químicamente , Edema/inducido químicamente , Emulsiones , Humanos , Hidrólisis , Nanopartículas/química , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Xilenos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA