Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 17(1): 146, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375817

RESUMEN

BACKGROUND: Although historically microglia were thought to be immature in the fetal brain, evidence of purposeful interactions between these immune cells and nearby neural progenitors is becoming established. Here, we examined the influence of embryonic microglia on gliogenesis within the developing tuberal hypothalamus, a region later important for energy balance, reproduction, and thermoregulation. METHODS: We used immunohistochemistry to quantify the location and numbers of glial cells in the embryonic brain (E13.5-E17.5), as well as a pharmacological approach (i.e., PLX5622) to knock down fetal microglia. We also conducted cytokine and chemokine analyses on embryonic brains in the presence or absence of microglia, and a neurosphere assay to test the effects of the altered cytokines on hypothalamic progenitor behaviors. RESULTS: We identified a subpopulation of activated microglia that congregated adjacent to the third ventricle alongside embryonic Olig2+ neural progenitor cells (NPCs) that are destined to give rise to oligodendrocyte and astrocyte populations. In the absence of microglia, we observed an increase in Olig2+ glial progenitor cells that remained at the ventricle by E17.5 and a concomitant decrease of these Olig2+ cells in the mantle zone, indicative of a delay in migration of these precursor cells. A further examination of maturing oligodendrocytes in the hypothalamic grey and white matter area in the absence of microglia revealed migrating oligodendrocyte progenitor cells (OPCs) within the grey matter at E17.5, a time point when OPCs begin to slow their migration. Finally, quantification of cytokine and chemokine signaling in ex vivo E15.5 hypothalamic cultures +/- microglia revealed decreases in the protein levels of several cytokines in the absence of microglia. We assayed the influence of two downregulated cytokines (CCL2 and CXCL10) on neurosphere-forming capacity and lineage commitment of hypothalamic NPCs in culture and showed an increase in NPC proliferation as well as neuronal and oligodendrocyte differentiation. CONCLUSION: These data demonstrate that microglia influence gliogenesis in the developing tuberal hypothalamus.


Asunto(s)
Astrocitos/citología , Hipotálamo/citología , Hipotálamo/embriología , Microglía/citología , Oligodendroglía/citología , Animales , Diferenciación Celular/fisiología , Ratones , Células-Madre Neurales/citología
2.
Endocrinology ; 161(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32154873

RESUMEN

The hypothalamus is a key homeostatic brain region and the primary effector of neuroendocrine signaling. Recent studies show that early embryonic developmental disruption of this region can lead to neuroendocrine conditions later in life, suggesting that hypothalamic progenitors might be sensitive to exogenous challenges. To study the behavior of hypothalamic neural progenitors, we developed a novel dissection methodology to isolate murine hypothalamic neural stem and progenitor cells at the early timepoint of embryonic day 12.5, which coincides with peak hypothalamic neurogenesis. Additionally, we established and optimized a culturing protocol to maintain multipotent hypothalamic neurospheres that are capable of sustained proliferation or differentiation into neurons, oligodendrocytes, and astrocytes. We characterized media requirements, appropriate cell seeding density, and the role of growth factors and sonic hedgehog (Shh) supplementation. Finally, we validated the use of fluorescence activated cell sorting of either Sox2GFPKI or Nkx2.1GFPKI transgenic mice as an alternate cellular isolation approach to enable enriched selection of hypothalamic progenitors for growth into neurospheres. Combined, we present a new technique that yields reliable culturing of hypothalamic neural stem and progenitor cells that can be used to study hypothalamic development in a controlled environment.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hipotálamo/citología , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Animales , Medios de Cultivo , Ratones , Ratones Transgénicos , Neurogénesis/fisiología
3.
Mol Cell Endocrinol ; 438: 3-17, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27720896

RESUMEN

The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.


Asunto(s)
Contaminantes Ambientales/toxicidad , Hipotálamo/embriología , Animales , Desarrollo Embrionario/genética , Humanos , Hipotálamo/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/patología
4.
Biochim Biophys Acta ; 1861(7): 594-605, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27090939

RESUMEN

Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH.


Asunto(s)
Colesterol en la Dieta/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Receptores de LDL/genética , Animales , Colesterol en la Dieta/efectos adversos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Femenino , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Metabolismo de los Lípidos/genética , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Oxidación-Reducción , Ácido Palmítico/farmacología , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Receptores de LDL/deficiencia , Transducción de Señal
5.
J Biol Chem ; 290(51): 30514-29, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26494623

RESUMEN

Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis , Diferenciación Celular , Colesterol/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Adipocitos Marrones/patología , Animales , Colesterol/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Ratones , Ratones Noqueados , Células Satélite del Músculo Esquelético/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA