Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 15: 59, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848818

RESUMEN

BACKGROUND: Oilseed rape is the third largest oleaginous crop in the world but requires high levels of N fertilizer of which only 50% is recovered in seeds. This weak N use efficiency is associated with a low foliar N remobilization, leading to a significant return of N to the soil and a risk of pollution. Contrary to what is observed during senescence in the vegetative stages, N remobilization from stems and leaves is considered efficient during monocarpic senescence. However, the contribution of stems towards N management and the cellular mechanisms involved in foliar remobilization remain largely unknown. To reach this goal, the N fluxes at the whole plant level from bolting to mature seeds and the processes involved in leaf N remobilization and proteolysis were investigated in two contrasting genotypes (Aviso and Oase) cultivated under ample or restricted nitrate supply. RESULTS: During seed filling in both N conditions, Oase efficiently allocated the N from uptake to seeds while Aviso favoured a better N remobilization from stems and leaves towards seeds. Nitrate restriction decreased seed yield and oil quality for both genotypes but Aviso had the best seed N filling. Under N limitation, Aviso had a better N remobilization from leaves to stems before the onset of seed filling. Afterwards, the higher N remobilization from stems and leaves of Aviso led to a higher final N amount in seeds. This high leaf N remobilization is associated with a better degradation/export of insoluble proteins, oligopeptides, nitrate and/or ammonia. By using an original method based on the determination of Rubisco degradation in the presence of inhibitors of proteases, efficient proteolysis associated with cysteine proteases and proteasome activities was identified as the mechanism of N remobilization. CONCLUSION: The results confirm the importance of foliar N remobilization after bolting to satisfy seed filling and highlight that an efficient proteolysis is mainly associated with (i) cysteine proteases and proteasome activities and (ii) a fine coordination between proteolysis and export mechanisms. In addition, the stem may act as transient storage organs in the case of an asynchronism between leaf N remobilization and N demand for seed filling.


Asunto(s)
Brassica napus/genética , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Tallos de la Planta/metabolismo , Proteolisis , Semillas/metabolismo , Aminoácidos/metabolismo , Biomasa , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Clorofila/metabolismo , Genotipo , Glutamato Deshidrogenasa/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Cinética , Nitratos/farmacología , Nitrógeno/farmacología , Hojas de la Planta/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteolisis/efectos de los fármacos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Semillas/efectos de los fármacos , Solubilidad
2.
Planta ; 242(1): 53-68, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25820267

RESUMEN

MAIN CONCLUSION: The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.


Asunto(s)
Brassica rapa/embriología , Brassica rapa/genética , Gotas Lipídicas/metabolismo , Aceites de Plantas/aislamiento & purificación , Semillas/anatomía & histología , Semillas/metabolismo , Brassica rapa/anatomía & histología , Electroforesis en Gel Bidimensional , Genotipo , Espectroscopía de Resonancia Magnética , Fosfolípidos/metabolismo , Fitosteroles/metabolismo , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/ultraestructura , Tocoferoles/metabolismo
3.
Proteomics ; 13(12-13): 1836-49, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23589365

RESUMEN

Oleaginous seeds store lipids in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids bound by proteins embedded in a phospholipid monolayer. OB proteins are well conserved in plants and have long been grouped into only two categories: structural proteins or enzymes. Recent work, however, which identified other classes of proteins associated with OBs, clearly shows that this classification is obsolete. Proteomics-mediated OB protein identification is facilitated in plants for which the genome is sequenced and annotated. However, it is not clear whether this knowledge can be dependably transposed to less well-characterized plants, including the well-established commercial sources of seed oil as well as the many others being proposed as novel sources for biodiesel, especially in Africa and Asia. Toward an update of the current data available on OB proteins this review discusses (i) the specific difficulties for proteomic studies of organelles; (ii) a 2012 census of the proteins found in seed OBs from various crops; (iii) the oleosin composition of OBs and their role in organelle stability; (iv) PTM of OB proteins as an emerging field of investigation; and finally we describe the emerging model of the OB proteome from oilseed crops.


Asunto(s)
Productos Agrícolas , Aceites de Plantas , Proteínas de Plantas , Semillas , Procesamiento Proteico-Postraduccional , Proteoma
4.
J Plant Physiol ; 168(17): 2015-20, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21803444

RESUMEN

Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards.


Asunto(s)
Brassica napus/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Brassica napus/crecimiento & desarrollo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Fosfolípidos/metabolismo , Proteínas de Plantas/genética , Proteómica , Semillas/crecimiento & desarrollo , Factores de Tiempo , Triglicéridos/metabolismo
5.
C R Biol ; 331(10): 763-71, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18926490

RESUMEN

Oilseed rape (Brassica napus L.) is a major oil crop that also supplies proteins for the feed industry. In order to reduce total cost production, the objective is to increase oil yield while reducing crop inputs (especially nitrogen and pesticides). Concomitantly, it is necessary to anticipate specific uses (e.g., fatty acid composition) and to ensure the valorisation of the by-products (rapeseed meal). By the past, improvement of seed quality focused on fatty acid balance and low seed glucosinolate content. Current goals include the breeding of yellow-seeded rapeseed lines with high content of seed oil. The use of molecular tools and the exploitation of Arabidopsis knowledge will be presented and discussed.


Asunto(s)
Brassica napus/genética , Cruzamiento/métodos , Semillas/química , Alimentación Animal/análisis , Animales , Brassica napus/metabolismo , Ácidos Grasos/metabolismo , Alimentos Modificados Genéticamente , Genes de Plantas , Variación Genética , Glucosinolatos/efectos adversos , Glucosinolatos/metabolismo , Valor Nutritivo , Aceites de Plantas/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Ratas , Semillas/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA