Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385748

RESUMEN

BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Masculino , Adulto , Femenino , Humanos , Atorvastatina/farmacología , Atorvastatina/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias , Enfermedades Musculares/metabolismo
2.
Elife ; 102021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34132194

RESUMEN

Currently there is great interest in targeting mitochondrial oxidative phosphorylation (OXPHOS) in cancer. However, notwithstanding the targeting of mutant dehydrogenases, nearly all hopeful 'mito-therapeutics' cannot discriminate cancerous from non-cancerous OXPHOS and thus suffer from a limited therapeutic index. Using acute myeloid leukemia (AML) as a model, herein, we leveraged an in-house diagnostic biochemical workflow to identify 'actionable' bioenergetic vulnerabilities intrinsic to cancerous mitochondria. Consistent with prior reports, AML growth and proliferation was associated with a hyper-metabolic phenotype which included increases in basal and maximal respiration. However, despite having nearly 2-fold more mitochondria per cell, clonally expanding hematopoietic stem cells, leukemic blasts, as well as chemoresistant AML were all consistently hallmarked by intrinsic OXPHOS limitations. Remarkably, by performing experiments across a physiological span of ATP free energy, we provide direct evidence that leukemic mitochondria are particularly poised to consume ATP. Relevant to AML biology, acute restoration of oxidative ATP synthesis proved highly cytotoxic to leukemic blasts, suggesting that active OXPHOS repression supports aggressive disease dissemination in AML. Together, these findings argue against ATP being the primary output of leukemic mitochondria and provide proof-of-principle that restoring, rather than disrupting, OXPHOS may represent an untapped therapeutic avenue for combatting hematological malignancy and chemoresistance.


Asunto(s)
Metabolismo Energético/fisiología , Leucemia Mieloide Aguda , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/fisiopatología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/fisiología , Adulto Joven
3.
Life Sci ; 239: 117053, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31733316

RESUMEN

AIMS: Intracardiac injection of recombinant EphrinA1-Fc immediately following coronary artery ligation in mice reduces infarct size in both reperfused and non-reperfused myocardium, but the cellular alterations behind this phenomenon remain unknown. MAIN METHODS: Herein, 10 wk-old B6129SF2/J male mice were exposed to acute ischemia/reperfusion (30minI/24hrsR) injury immediately followed by intracardiac injection of either EphrinA1-Fc or IgG-Fc. After 24 h of reperfusion, sections of the infarct margin in the left ventricle were imaged via transmission electron microscopy, and mitochondrial function was assessed in both permeabilized fibers and isolated mitochondria, to examine mitochondrial structure, function, and energetics in the early stages of repair. KEY FINDINGS: At a structural level, EphrinA1-Fc administration prevented the I/R-induced loss of sarcomere alignment and mitochondrial organization along the Z disks, as well as disorganization of the cristae and loss of inter-mitochondrial junctions. With respect to bioenergetics, loss of respiratory function induced by I/R was prevented by EphrinA1-Fc. Preservation of cardiac bioenergetics was not due to changes in mitochondrial JH2O2 emitting potential, membrane potential, ADP affinity, efficiency of ATP production, or activity of the main dehydrogenase enzymes, suggesting that EphrinA1-Fc indirectly maintains respiratory function via preservation of the mitochondrial network. Moreover, these protective effects were lost in isolated mitochondria, further emphasizing the importance of the intact cardiomyocyte ultrastructure in mitochondrial energetics. SIGNIFICANCE: Collectively, these data suggest that intracardiac injection of EphrinA1-Fc protects cardiac function by preserving cardiomyocyte structure and mitochondrial bioenergetics, thus emerging as a potential therapeutic strategy in I/R injury.


Asunto(s)
Efrina-A1/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Técnicas Electrofisiológicas Cardíacas/métodos , Metabolismo Energético , Efrina-A1/administración & dosificación , Masculino , Ratones , Ratones Endogámicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
4.
J Biol Chem ; 293(2): 466-483, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29162722

RESUMEN

Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Ácido Linoleico/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Fosfolípidos/metabolismo , Cardiolipinas/metabolismo , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos Insaturados/metabolismo , Corazón/efectos de los fármacos , Humanos , Espectrometría de Masas , Mitocondrias Cardíacas/efectos de los fármacos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
5.
Cell Metab ; 27(1): 167-179.e7, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29103922

RESUMEN

Menopause results in a progressive decline in 17ß-estradiol (E2) levels, increased adiposity, decreased insulin sensitivity, and a higher risk for type 2 diabetes. Estrogen therapies can help reverse these effects, but the mechanism(s) by which E2 modulates susceptibility to metabolic disease is not well understood. In young C57BL/6N mice, short-term ovariectomy decreased-whereas E2 therapy restored-mitochondrial respiratory function, cellular redox state (GSH/GSSG), and insulin sensitivity in skeletal muscle. E2 was detected by liquid chromatography-mass spectrometry in mitochondrial membranes and varied according to whole-body E2 status independently of ERα. Loss of E2 increased mitochondrial membrane microviscosity and H2O2 emitting potential, whereas E2 administration in vivo and in vitro restored membrane E2 content, microviscosity, complex I and I + III activities, H2O2 emitting potential, and submaximal OXPHOS responsiveness. These findings demonstrate that E2 directly modulates membrane biophysical properties and bioenergetic function in mitochondria, offering a direct mechanism by which E2 status broadly influences energy homeostasis.


Asunto(s)
Metabolismo Energético , Estradiol/farmacología , Membranas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Adiposidad/efectos de los fármacos , Animales , Respiración de la Célula/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Ovario/efectos de los fármacos , Ovario/metabolismo , Oxidación-Reducción , Viscosidad
6.
J Lipid Res ; 57(7): 1231-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27140664

RESUMEN

The objective of our study was to determine the mechanism of action of the short-chain ceramide analog, C6-ceramide, and the breast cancer drug, tamoxifen, which we show coactively depress viability and induce apoptosis in human acute myelogenous leukemia cells. Exposure to the C6-ceramide-tamoxifen combination elicited decreases in mitochondrial membrane potential and complex I respiration, increases in reactive oxygen species (ROS), and release of mitochondrial proapoptotic proteins. Decreases in ATP levels, reduced glycolytic capacity, and reduced expression of inhibitors of apoptosis proteins also resulted. Cytotoxicity of the drug combination was mitigated by exposure to antioxidant. Cells metabolized C6-ceramide by glycosylation and hydrolysis, the latter leading to increases in long-chain ceramides. Tamoxifen potently blocked glycosylation of C6-ceramide and long-chain ceramides. N-desmethyltamoxifen, a poor antiestrogen and the major tamoxifen metabolite in humans, was also effective with C6-ceramide, indicating that traditional antiestrogen pathways are not involved in cellular responses. We conclude that cell death is driven by mitochondrial targeting and ROS generation and that tamoxifen enhances the ceramide effect by blocking its metabolism. As depletion of ATP and targeting the "Warburg effect" represent dynamic metabolic insult, this ceramide-containing combination may be of utility in the treatment of leukemia and other cancers.


Asunto(s)
Ceramidas/administración & dosificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Tamoxifeno/administración & dosificación , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Complejo I de Transporte de Electrón/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA