Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Qual ; 50(5): 1171-1183, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34337746

RESUMEN

Stormwater treatment areas (STAs) are constructed wetlands established to capture phosphorus (P) from agricultural runoff before reaching the Florida Everglades. Retained P is primarily stored in wetland soils and sediments generated through a collection of interrelated physical, chemical, and biological processes. The amount of P and other elements (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn) retained in the flocculent (floc) and recently accreted soil (RAS) horizons from a relic agricultural ditch within Cell 4S of STA-1E were compared with the surrounding marsh soils (upstream and downstream sites of the ditch). The amount of P retained in the ditch was significantly greater than the surrounding marsh soils and for all the elements in the floc horizon and five of the nine elements in the RAS horizon, suggesting that different processes or process rates influenced accumulation. Phosphorus species in the floc and RAS sediment horizons were identified and quantified using 31 P nuclear magnetic resonance (NMR) spectroscopy and total P determined by microwave plasma-optical emission spectroscopy. In general, P forms were dominated by orthophosphate, sugar phosphates, nucleotides, DNA, and pyrophosphate, with varying relative abundances of species. Total P concentration significantly decreased from upstream to downstream of the ditch by an average of 28 and 35% for floc and RAS soils, respectively. The relatively high P accrual rate within the ditch suggested that relic ditches perpendicular to flow could reduce P transport to downstream soils and sediments and, in turn, help maintain low P levels in overlying water.


Asunto(s)
Fósforo , Purificación del Agua , Lluvia , Abastecimiento de Agua , Humedales
2.
Sci Total Environ ; 725: 138442, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32464752

RESUMEN

Stormwater treatment areas (STAs) are an integral component of the Everglades restoration strategies to reduce phosphorus (P) loads from adjacent agricultural and urban areas. The overall objective of this study was to determine the forms and distribution of P in floc and soils along the flow-path of two parallel flow-ways (FWs) in STA-2 with emergent aquatic vegetation (EAV) and submerged aquatic vegetation (SAV), respectively, to assess their stability and potential for long term storage. In EAV high organic matter accretion supported low bulk density and high P concentrations in floc and soil, while high mineral matter accretion in SAV resulted in high bulk density and low P concentrations. Approximately 25-30% of the total P is identified as highly reactive P (HRP) pools, 50-60% in moderately reactive P (RP) forms, and 15-20% in the non-reactive P (NRP) pool. Within HRP and RP pools, a large proportion of P in the SAV areas was inorganic while organic P was more dominant in the EAV areas. Enrichment of total P (especially in HRP and RP pools) found in the upstream areas of both FWs resulted from the P loading into FWs over time, and the surplus P conditions can potentially support flux into the water column. In EAV FW, approximately 45% of the P retained was recovered in floc and RAS and remaining was possibly retained in the above and below ground biomass and incorporated into subsurface soils. In SAV FW, all of the P retained was recovered in floc and soils suggesting P retention in plants was not significant. For STAs to continue to function effectively and meet the desired outflow TP concentrations, management strategies should be aimed to promote P limiting conditions within the system to avoid release of P from floc and soils to water column and potential downstream transport.


Asunto(s)
Fósforo , Purificación del Agua , Nutrientes , Lluvia , Suelo , Abastecimiento de Agua
3.
Water Res ; 168: 115153, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31655441

RESUMEN

A suite of biomarkers, including amino acids, pigments, and lignin phenols coupled with high resolution mass spectrometry were used to evaluate differences in the sources and fate of organic matter (OM) in Everglades treatment wetlands as a model for OM cycling in shallow water wetlands. Five components of the system (water column particulate matter, vertical traps, flocculent material, periphyton, and surface soil) were assessed for OM transformations down-profile (i.e. water column to soil) and between treatment cells dominated by emergent aquatic vegetation (EAV) and submerged aquatic vegetation (SAV), with comparisons to reference sites within the remnant Everglades. We found that OM cycling is fundamentally different between EAV and SAV wetlands, and that SAV wetlands have some shared characteristics with similar habitats in the remnant Everglades. Other than locations densely populated by Typha spp., water column particulate organic C was predominantly derived from microbial/cryptomonad sources, rather than macroscopic sources (vascular plants and algal mats). Bacterial amino acid biomarkers were positively correlated with amino acid degradation indices and organic P (Po), respectively suggesting that microbial abundance is associated with less degraded OM, and that further investigation into relationships between microbial biomass and Po is warranted. Overall, this multi-biomarker approach can elucidate the relative degradation of OM pools, identify sources of OM, and highlight the importance of water column processes in shallow water wetlands.


Asunto(s)
Purificación del Agua , Humedales , Biomarcadores , Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA