Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37242566

RESUMEN

Metal-phenolic networks (MPNs) are a new type of nanomaterial self-assembled by metal ions and polyphenols that have been developed rapidly in recent decades. They have been widely investigated, in the biomedical field, for their environmental friendliness, high quality, good bio-adhesiveness, and bio-compatibility, playing a crucial role in tumor treatment. As the most common subclass of the MPNs family, Fe-based MPNs are most frequently used in chemodynamic therapy (CDT) and phototherapy (PTT), where they are often used as nanocoatings to encapsulate drugs, as well as good Fenton reagents and photosensitizers to improve tumor therapeutic efficiency substantially. In this review, strategies for preparing various types of Fe-based MPNs are first summarized. We highlight the advantages of Fe-based MPNs under the different species of polyphenol ligands for their application in tumor treatments. Finally, some current problems and challenges of Fe-based MPNs, along with a future perspective on biomedical applications, are discussed.

2.
Int J Pharm ; 627: 122228, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36162610

RESUMEN

Coordination chemistry has always been vital to explore the material prominence of metal-organic systems. The metal-organic chemistry plays a fundamental role in decisive structural features, which are accountable for tuning the properties of materials. Tumour therapy has become an important research field of medical treatment in the world. Metal-organic frameworks (MOFs) have attracted extensive interest in medical science research due to their large effective surface area, clear pore network, and critical catalytic performance. Compared with traditional MOF materials, MOF materials with core-shell structures have a higher loading rate and better stability, which can overcome a single function. They have been successfully used in tumour medical research and have excellent prospects for diagnosing and treating various tumours. The current review article thoroughly describes the various synthetic approaches for engineering core-shell MOF materials, the structural types, and the potential functional applications. We also discussed core-shell MOF materials for the various treatment of tumours, such as tumour chemotherapy, tumour phototherapy and tumour microenvironment anti-hypoxia therapy. In this paper, the synthesized procedures of core-shell MOFs and their applications for tumour treatment have been discussed, and their future research has prospected. The current improved strategies, challenges, and prospects are also presented because of the metal-organic chemistry governing the structural modification of core-shell MOFs for tumour therapy applications. Therefore, the present review article opens a new door for medicinal chemists to tune the structural features of the core-shell MOF materials to modulate tumour therapy with simple, low-cost materials for better human lives.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Estructuras Metalorgánicas/química , Catálisis , Metales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA