Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360897

RESUMEN

Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.


Asunto(s)
Genes Ligados a X , Enfermedad por Depósito de Glucógeno de Tipo IIb/genética , Enfermedad por Depósito de Glucógeno de Tipo IIb/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Femenino , Enfermedad por Depósito de Glucógeno de Tipo IIb/clasificación , Enfermedad por Depósito de Glucógeno de Tipo IIb/patología , Heterocigoto , Humanos , Masculino , Mosaicismo , Inactivación del Cromosoma X
2.
Int J Cardiol ; 203: 964-71, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26625322

RESUMEN

BACKGROUND: Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. METHODS: Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog, idebenone (IDE) or the iron chelator, deferiprone (DFP), which are both under clinical trial. RESULTS: DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 µM and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 µM. With regard to cardiac electrical-contraction (EC) coupling function, decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein, succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition, iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. CONCLUSIONS: DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events, cardiac electrical-coupling during contraction.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ataxia de Friedreich/terapia , Células Madre Pluripotentes Inducidas , Hierro/metabolismo , Miocitos Cardíacos/metabolismo , Piridonas/farmacología , Ubiquinona/análogos & derivados , Antioxidantes/farmacología , Deferiprona , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Regulación de la Expresión Génica , Homeostasis , Humanos , Quelantes del Hierro/farmacología , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/genética , Miocitos Cardíacos/patología , Estrés Oxidativo , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquinona/farmacología , Frataxina
3.
Mol Endocrinol ; 24(9): 1728-36, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20667986

RESUMEN

Embryonic stem cells (ESCs) can differentiate into functional cardiomyocytes and thus represent a promising cell source for cardiac regenerative therapy. Nevertheless, the therapeutic application of ESC-derived cardiomyocytes is limited by the low efficacy of the current protocol for cardiac differentiation and their immature phenotypes. Although thyroid hormone is essential for normal cardiac development and function, its role in the cardiac differentiation of ESCs, as well as the maturation of ESC-derived cardiomyocytes, remains unclear. In this study, we examined the cardiac differentiation of murine ESCs in the presence of T(3) for 7 d using flow cytometry, RT-PCR, cellular electrophysiology study, and confocal calcium imaging. Compared with control conditions, T(3) supplementation increased the number of ESC-derived cardiomyocytes and was accompanied by up-regulation of a panel of cardiac markers, including Nkx2.5, myosin light chain-2V, as well as alpha- and beta-myosin heavy chain. More importantly, electrophysiological study revealed that ESC-derived cardiomyocytes exhibited more adult-like phenotypes after T(3) supplementation based on action potential characteristics. They also exhibited more adult-like calcium homeostasis properties. These phenotypic changes were associated with up-regulation of sarco(endo)plasmic reticulum calcium ATPase-2a and ryanodine receptor-2 expression. In addition, the classical (genomic) pathway was shown to be involved in T(3)-induced cardiac differentiation of ESCs. Our results show that T(3) supplementation promotes cardiac differentiation of ESCs and enhances maturation of electrophysiological, as well as calcium homeostasis, properties of ESC-derived cardiomyocytes.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Genoma/genética , Miocardio/citología , Transducción de Señal/efectos de los fármacos , Triyodotironina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Cafeína/farmacología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Miocardio/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA