Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(48): 106083-106098, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37723396

RESUMEN

The impact of climate change on water resource availability and soil quality is more and more emphasized under the Mediterranean basin, mostly characterized by drought and extreme weather conditions. The present study aims to investigate how electromagnetic induction technique and soil mapping combined with crop yield data can be used to optimize phosphorus (P) use efficiency by chickpea crop under drip fertigation system. The study was carried out on a 2.5-ha agricultural plot and the agronomic experiments in two growing cycles of chickpea crop. Soil spatial variability was first assessed by the measurement of soil apparent electrical conductivity (ECa) using the CMD Mini-Explorer sensor, and then, soil physicochemical properties were evaluated based on an oriented soil sampling scheme to explore other soil spatial variabilities influencing chickpea yield and quality. Data from the first agronomic experiment were used in geostatistical, multiple linear regression (MLR), and fuzzy c-means unsupervised classification algorithms to properly identify P drip fertigation management zones (MZs). Results from the Person's correlation analysis revealed that chickpea grain yield was more influenced by soil ECa (r = - 0.56), pH (r = - 0.84), ECe (r = - 0.6), P content (r = 0.72), and calcium (Ca) content (r = - 0.83). The proposed MLR-based model to predict chickpea grain yield showed good performances with a normalized root mean square error (NRMSE) of 0.11% and a coefficient of determination (R2) equal to 0.69. The identified MZs were verified by the one-way variance analysis for the studied soil and plant attributes, revealing that the first MZ1 presents a high grain yield, high soil P content, and low ECa. The low fertility MZ2 located in the south part of the studied site presented a low chickpea grain yield due to the low P content and the high ECa. Moreover, the application of P-variable rate fertigation regimes in the second field experiment significantly improved P use efficiency, chickpea grain yield, seed quality, and farmer income by 18%, 12%, 9%, and 136 $/ha, respectively, as compared to the conventional drip fertigation practices. The approach proposed in this study can greatly contribute to optimizing agro-input use efficiency under drip fertigation system, thereby improving farmers' incomes, preserving the ecosystem, and ensuring sustainable cropping systems in the Mediterranean climate.


Asunto(s)
Cicer , Suelo , Humanos , Suelo/química , Fósforo/análisis , Ecosistema , Agricultura , Fenómenos Electromagnéticos , Grano Comestible/química
2.
Sci Rep ; 12(1): 6671, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461340

RESUMEN

Water shortage and soil nutrient depletion are considered the main factors limiting crops productivity in the Mediterranean region characterized by longer and frequent drought episodes. In this study, we investigated the interactive effects of P fertilizer form and soil moisture conditions on chickpea photosynthetic activity, water and nutrient uptake, and their consequent effects on biomass accumulation and nutrient use efficiency. Two P fertilizer formulas based on orthophosphates (Ortho-P) and polyphosphates (Poly-P) were evaluated under three irrigation regimes (I1: 75% of field capacity, I2: 50% FC and I3: 25% FC), simulating three probable scenarios of soil water content in the Mediterranean climate (adequate water supply, medium, and severe drought stress), and compared to an unfertilized treatment. The experiment was conducted in a spilt-plot design under a drip fertigation system. The results showed significant changes in chickpea phenotypic and physiological traits in response to different P and water supply regimes. Compared with the unfertilized treatment, the stomata density and conductance, chlorophyll content, photosynthesis efficiency, biomass accumulation, and plant nutrient uptake were significantly improved under P drip fertigation. The obtained results suggested that the P fertilizer form and irrigation regime providing chickpea plants with enough P and water, at the early growth stage, increased the stomatal density and conductance, which significantly improved the photosynthetic performance index (PIABS) and P use efficiency (PUE), and consequently biomass accumulation and nutrient uptake. The significant correlations established between leaf stomatal density, PIABS, and PUE supported the above hypothesis. We concluded that the Poly-P fertilizers applied in well-watered conditions (I1) performed the best in terms of chickpea growth improvement, nutrient uptake and use efficiency. However, their effectiveness was greatly reduced under water stress conditions, unlike the Ortho-P form which kept stable positive effects on the studied parameters.


Asunto(s)
Cicer , Fertilizantes , Nutrientes , Fósforo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Suelo
3.
Funct Plant Biol ; 49(6): 505-516, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34147138

RESUMEN

Photosynthesis is the main biophysiological process that governs plant growth and development. Under nutrient deficiency in crops and soils, many photosynthetic reactions can be disturbed. We compared two polyphosphates (Poly-A and Poly-B) and an orthophosphate fertiliser (Ortho-P) to an unfertilised treatment under three drip fertigation frequencies. Results showed that the electron transport chain between PSII and PSI was significantly enhanced in fertigated chickpea plants compared with the control treatment. The polyphosphate fertiliser (Poly-A) enhanced the number of electron acceptors of the photosynthetic linear electron transport chain compared with the other fertiliser forms. Furthermore, the time for reaching the maximum intensity F m was shortened in the fertilised chickpea plant indicating that the rate of light trapping and electron transport was enhanced under phosphorus drip fertigation. Also, the energy needed to close all reaction centres was decreased with P fertigated treatments, as revealed by the electron acceptor pool size of PSII (Sm/tFmax ). However, no significant effects of fertiliser forms or fertigation frequencies were observed on the energetic demand for reaction centres closure. Plants grown under polyphosphate fertigation absorbed significantly more phosphorus. Positive correlations between phosphorus uptake, photosynthetic yield, chickpea podding dynamic, and grain yield showed the beneficial effects of adequate phosphorus nutrition on chickpea growth and productivity.


Asunto(s)
Cicer , Fertilizantes , Productos Agrícolas , Fósforo/farmacología , Fotosíntesis/fisiología , Polifosfatos/farmacología
4.
J Contam Hydrol ; 184: 1-13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26697744

RESUMEN

Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.


Asunto(s)
Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Hidrocarburos/metabolismo , Petróleo/metabolismo , Rhodococcus/metabolismo , Contaminantes del Suelo/análisis , Impedancia Eléctrica , Microbiología del Suelo , Tomografía
5.
Neurohospitalist ; 4(2): 90-3, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24707338

RESUMEN

Acute hypokalemic paralysis is characterized by muscle weakness or paralysis secondary to low serum potassium levels. Neurogenic diabetes insipidus (DI) is a condition where the patient excretes large volume of dilute urine due to low levels of antidiuretic hormone. Here, we describe a patient with neurogenic DI who developed hypokalemic paralysis without a prior history of periodic paralysis. A 30-year-old right-handed Hispanic male was admitted for refractory seizures and acute DI after developing a dental abscess. He had a history of pituitary adenoma resection at the age of 13 with subsequent pan-hypopituitarism and was noncompliant with hormonal supplementation. On hospital day 3, he developed sudden onset of quadriplegia with motor strength of 0 of 5 in the upper extremities bilaterally and 1 of 5 in both lower extremities with absent deep tendon reflexes. His routine laboratory studies revealed severe hypokalemia of 1.6 mEq/dL. Nerve Conduction Study (NCS) revealed absent compound motor action potentials (CMAPs) with normal sensory potentials. Electromyography (EMG) did not reveal any abnormal insertional or spontaneous activity. He regained full strength within 36 hours following aggressive correction of the hypokalemia. Repeat NCS showed return of CMAPs in all nerves tested and EMG revealed normal motor units and normal recruitment without myotonic discharges. In patients with central DI with polyuria, hypokalemia can result in sudden paralysis. Hypokalemic paralysis remains an important differential in an acute case of paralysis and early recognition and appropriate management is key.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA