Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxins (Basel) ; 14(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36287957

RESUMEN

The excessive proliferation of cyanobacteria in surface waters is a widespread problem worldwide, leading to the contamination of drinking water sources. Short- and long-term solutions for managing cyanobacterial blooms are needed for drinking water supplies. The goal of this research was to investigate the cyanobacteria community composition using shotgun metagenomics in a short term, in situ mesocosm experiment of two lakes following their coagulation with ferric sulfate (Fe2(SO4)3) as an option for source water treatment. Among the nutrient paramenters, dissolved nitrogen was related to Microcystis in both Missisquoi Bay and Petit Lac St. François, while the presence of Synechococcus was related to total nitrogen, dissolved nitrogen, dissolved organic carbon, and dissolved phosphorus. Results from the shotgun metagenomic sequencing showed that Dolichospermum and Microcystis were the dominant genera in all of the mesocosms in the beginning of the sampling period in Missisquoi Bay and Petit Lac St. François, respectively. Potentially toxigenic genera such as Microcystis were correlated with intracellular microcystin concentrations. A principal component analysis showed that there was a change of the cyanobacterial composition at the genus level in the mesocosms after two days, which varied across the studied sites and sampling time. The cyanobacterial community richness and diversity did not change significantly after its coagulation by Fe2(SO4)3 in all of the mesocosms at either site. The use of Fe2(SO4)3 for an onsite source water treatment should consider its impact on cyanobacterial community structure and the reduction of toxin concentrations.


Asunto(s)
Cianobacterias , Agua Potable , Microcystis , Microcistinas/análisis , Agua Potable/análisis , Cianobacterias/genética , Microcystis/genética , Lagos/microbiología , Nitrógeno/análisis , Fósforo/análisis
2.
Acta Trop ; 232: 106537, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35623400

RESUMEN

Although some studies on the effects of para-probiotics on the immune system and intestinal health have been conducted independently of research on antibiotics ass growth promoters. This study investigated the effects of heat-killed Lactobacillus plantarumL-137 (L-137) and antibiotics as preventive and/or therapeutic substances for broilers against subclinical necrotic enteritis caused by Clostridium perfringens (CP). In total, 300 1-day-old broilers (46.13 ± 1.38 g) were randomly stocked at 10 birds pen-1 in five replicates and divided into six groups, namely T1 and T2, positive and negative control of CP challenge; T3 and T4, prevention with basal diet plus 10 and 50 mg/kg L-137; T5 and T6, prevention and treatment with basal diet plus 50 mg/kg of L-137 and bacitracin at 50 ppm, respectively. Broilers administered L-137 in T4, T5 and bacitracin in T6 showed an improved (p < 0.05) villus height/crypt depth ratio than control groups, suggesting that it might significantly boost growth performance. In contrast to bacitracin, a high dosage of L-137 significantly increased (p < 0.05) the spleen index value and the cytokine levels, as well as the expression of intestinal ß-defensin genes on day 28. During the 42-day production period, broilers in T4 and T5 showed a significantly enhanced (p < 0.05) expression of cytokines, AvBD-1 and AvBD-7 on day 42 compared to the control and bacitracin groups. In particular, broilers given the L-137 diets demonstrated no cumulative mortality following CP exposure, compared to a 2% mortality in T6. Our findings provide insight into eco-friendly alternatives to antibiotics for maximizing growth performance, feed efficiency and long-term disease protection in chickens; however, this has to be proven in larger-scale commercial experiments.


Asunto(s)
Lactobacillus plantarum , Enfermedades de las Aves de Corral , Alimentación Animal/análisis , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacitracina/farmacología , Bacitracina/uso terapéutico , Pollos , Clostridium perfringens , Dieta/veterinaria , Suplementos Dietéticos/análisis , Calor , Enfermedades de las Aves de Corral/prevención & control
3.
Front Microbiol ; 9: 2059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233536

RESUMEN

The use of probiotics is considered an attractive biocontrol method. It is effective in growth promotion in aquaculture. However, the mode of action of probiotics in fish in terms of growth promotion remains unclear. The objective of the present study was to investigate growth promotion effect of dietary administration of host-derived probiotics, Lactococcus lactis WFLU12, on olive flounder compared to control group fed with basal diet by analyzing their intestinal and serum metabolome using capillary electrophoresis mass spectrometry with time-of flight (CE-TOFMS). Results of CE-TOFMS revealed that 53 out of 200 metabolites from intestinal luminal metabolome and 5 out of 171 metabolites from serum metabolome, respectively, were present in significantly higher concentrations in the probiotic-fed group than those in the control group. Concentrations of metabolites such as citrulline, tricarboxylic acid cycle (TCA) intermediates, short chain fatty acids, vitamins, and taurine were significantly higher in the probiotic-fed group than those in the control group. The probiotic strain WFLU12 also possesses genes encoding enzymes to help produce these metabolites. Therefore, it is highly likely that these increased metabolites linked to growth promotion in olive flounder are due to supplementation of the probiotic strain. To the best of our knowledge, this is the first study to show that dietary probiotics can greatly influence metabolome in fish. Findings of the present study may reveal important implications for maximizing the efficiency of using dietary additives to optimize fish health and growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA