Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Prod ; 86(6): 1476-1486, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37289832

RESUMEN

Bioassay-guided investigation of the EtOAc-soluble extract of a culture of the marine-derived fungus Peroneutypa sp. M16 led to the isolation of seven new polyketide- and terpenoid-derived metabolites (1, 2, 4-8), along with known polyketides (3, 9-13). Structures of compounds 1, 2, and 4-8 were established by analysis of spectroscopic data. Absolute configurations of compounds 1, 2, 4, 6, 7, and 8 were determined by the comparison of experimental ECD spectra with calculated CD data. Compound 5 exhibited moderate antiplasmodial activity against both chloroquine-sensitive and -resistant strains of Plasmodium falciparum.


Asunto(s)
Policétidos , Xylariales , Policétidos/química , Terpenos/química , Estructura Molecular , Extractos Vegetales
2.
J Ethnopharmacol ; 255: 112743, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32171895

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Ayahuasca is a tea produced through decoction of Amazonian plants. It has been used for centuries by indigenous people of South America. The beverage is considered to be an ethnomedicine, and it is traditionally used for the treatment of a wide range of diseases, including neurological illness. Besides, some scientific evidence suggests it may be applicable to Parkinson's disease (PD) treatment. Thus, Ayahuasca deserves in depth studies to clarify its potential role in this disease. AIM OF THE STUDY: This study aimed to use an untargeted metabolomics approach to evaluate the neuroprotective potential of the Ayahuasca beverage, the extracts from its matrix plants (Banisteriopsis caapi and Psychotria viridis), its fractions and its main alkaloids on the viability of SH-SY5Y neuroblastoma cells in an in vitro PD model. MATERIAL AND METHODS: The cytotoxicity of Ayahuasca, crude extracts, and fractions of B. caapi and P. viridis, as well as neuroprotection promoted by these samples in a 6-hydroxydopamine (6-OHDA)-induced neurodegeneration model, were evaluated by the MTT assay at two time-points: 48 h (T1) and 72 h (T2). The main alkaloids from Ayahuasca matrix plants, harmine (HRE) and N,N-dimethyltryptamine (DMT), were also isolated and evaluated. An untargeted metabolomics approach was developed to explore the chemical composition of samples with neuroprotective activity. Ultra-Performance Liquid Chromatography coupled to Electrospray Ionisation and Time-of-Flight (UPLC-ESI-TOF) metabolome data was treated and further analysed using multivariate statistical analyses (MSA): principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The metabolites were dereplicated using the Dictionary of Natural Products and an in house database. The main alkaloids were also quantified by UPLC-MS/MS. RESULTS: The samples did not cause cytotoxicity in vitro and three of samples intensely increased cell viability at T1. The crude extracts, alkaloid fractions and HRE demonstrated remarkable neuroprotective effect at T2 while the hydroalcoholic fractions demonstrated this neuroprotective effect at T1 and T2. Several compounds from different classes, such as ß-carbolines and monoterpene indole alkaloids (MIAs) were revealed correlated with this property by MSA. Additionally, a total of 2419 compounds were detected in both ionisation modes. HRE showed potent neuroprotective action at 72 h, but it was not among the metabolites positively correlated with the most efficacious neuroprotective profile at either time (T1 and T2). Furthermore, DMT was statistically important to differentiate the dataset (VIP value > 1), although it did not exhibit sufficient neuroprotective activity by in vitro assay, neither a positive correlation with T1 and T2 neuroprotective profile, which corroborated the MSA results. CONCLUSION: The lower doses of the active samples stimulated neuronal cell proliferation and/or displayed the most efficacious neuroprotection profile, namely by preventing neuronal damage and improving cell viability against 6-OHDA-induced toxicity. Intriguingly, the hydroalcoholic fractions exhibited enhanced neuroprotective effects when compared to other samples and isolated alkaloids. This finding corroborates the significance of a holistic approach. The results demonstrate that Ayahuasca and its base plants have potential applicability for PD treatment and to prevent its progression differently from current drugs to treat PD.


Asunto(s)
Antiparkinsonianos/farmacología , Banisteriopsis/química , Metabolómica , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Psychotria/química , Antiparkinsonianos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Etnofarmacología , Humanos , Análisis de los Mínimos Cuadrados , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Oxidopamina/toxicidad , Extractos Vegetales/aislamiento & purificación , Polisacáridos , Análisis de Componente Principal , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
3.
J Ethnopharmacol ; 253: 112655, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32045681

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Species Cissus gongylodes has been used in the traditional medicine in South America and India for the treatment of urolithiasis, biliary and inflammatory problems without any scientific evidence. AIM OF THE STUDY: This work was developed to investigate for the first time the anti-inflammatory and anti-urolithiatic activities of leaf decoction of C. gongylodes. MATERIALS AND METHODS: Decoction was subjected to anti-inflammatory evaluation by the in vivo assay of ear oedema and quantification of the main mediators of inflammation PGE2 and LTB4, and the cytokine TNF-α. The decoction's anti-urolithiatic activity was determined by different in vitro assays to evaluate the inhibition and dissolution of the most prevalent types of kidney stones: calcium oxalate (CaOx) and struvite. Diffusion in gel technique and fresh urine of a patient with renal stone were used to investigate the inhibition and dissolution of CaOx, respectively, and the single diffusion gel growth technique was used to evaluate the inhibition and dissolution of struvite crystals. The decoction was chemically characterized by UHPLC-ESI-HRMS analysis. RESULTS: Decoction showed in vivo anti-inflammatory activity by potent decreasing the level of both the main mediators of inflammation and dose-dependent in vitro anti-urolithiatic action by inhibition and dissolution of both type of crystals, CaOx and struvite. CONCLUSIONS: Results obtained corroborate the reports of the traditional use of the decoction of Cissus gongylodes. Besides, it showed multi-target mechanisms actions, inhibition of the main inflammatory pathways, and inhibition/dissolution of the most prevalent types of crystals on urolithiasis. These actions make the decoction a promissory source to the development of new and more efficient drugs.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cissus , Edema/tratamiento farmacológico , Cálculos Renales/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Animales , Antiinflamatorios/química , Oxalato de Calcio/química , Aceite de Crotón , Cristalización , Dinoprostona/metabolismo , Edema/inducido químicamente , Edema/metabolismo , Humanos , Cálculos Renales/química , Leucotrieno B4/metabolismo , Masculino , Ratones , Extractos Vegetales/química , Hojas de la Planta , Estruvita/química , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA