Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2264: 177-186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33263910

RESUMEN

The cultivated potato is tetraploid with four probably equivalent loci for each gene. A potato variety is furthermore commonly genetically heterogeneous and selected based on a beneficial genetic context which is maintained by clonal propagation. When introducing genetic changes by genome editing it is then desirable to achieve edits in all four loci for a certain gene target. This is in order to avoid crosses to achieve homozygosity for edited gene loci and at the same time reduce risk of inbreeding depression. In such a context transient transfection of protoplasts for the introduction of mutations, avoiding stable insertion of foreign DNA, would be very attractive. The protocol of this chapter has been shown to be applicable for the introduction of mutations by DNA vectors containing expression cassettes of TALEN, Cas9, and Cas9 deaminase fusions together with sgRNA expression cassettes on either single or separate vectors. Furthermore, the protoplast-based system has been shown to work very efficiently for mutations introduced by in vitro-produced and transfected RNP (ribonucleoprotein) complexes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Proteínas de Plantas/antagonistas & inhibidores , Protoplastos/fisiología , Solanum tuberosum/genética , Tetraploidía , Mutación , Proteínas de Plantas/genética , Solanum tuberosum/crecimiento & desarrollo
2.
Plant Cell Rep ; 36(1): 117-128, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27699473

RESUMEN

KEY MESSAGE: Altered starch quality with full knockout of GBSS gene function in potato was achieved using CRISPR-Cas9 technology, through transient transfection and regeneration from isolated protoplasts. Site-directed mutagenesis (SDM) has shown great progress in introducing precisely targeted mutations. Engineered CRISPR-Cas9 has received increased focus compared to other SDM techniques, since the method is easily adapted to different targets. Here, we demonstrate that transient application of CRISPR-Cas9-mediated genome editing in protoplasts of tetraploid potato (Solanum tuberosum) yielded mutations in all four alleles in a single transfection, in up to 2 % of regenerated lines. Three different regions of the gene encoding granule-bound starch synthase (GBSS) were targeted under different experimental setups, resulting in mutations in at least one allele in 2-12 % of regenerated shoots, with multiple alleles mutated in up to 67 % of confirmed mutated lines. Most mutations resulted in small indels of 1-10 bp, but also vector DNA inserts of 34-236 bp were found in 10 % of analysed lines. No mutations were found in an allele diverging one bp from a used guide sequence, verifying similar results found in other plants that high homology between guide sequence and target region near the protospacer adjacent motif (PAM) site is essential. To meet the challenge of screening large numbers of lines, a PCR-based high-resolution fragment analysis method (HRFA) was used, enabling identification of multiple mutated alleles with a resolution limit of 1 bp. Full knockout of GBSS enzyme activity was confirmed in four-allele mutated lines by phenotypic studies of starch. One remaining wild-type (WT) allele was shown sufficient to maintain enough GBSS enzyme activity to produce significant amounts of amylose.


Asunto(s)
Alelos , Sistemas CRISPR-Cas/genética , Mutagénesis/genética , Protoplastos/metabolismo , Solanum tuberosum/genética , Tetraploidía , Secuencia de Bases , Técnicas de Genotipaje , Mutación/genética , Fenotipo , Regeneración , Reproducibilidad de los Resultados , Almidón/metabolismo , Transfección
3.
J Biotechnol ; 204: 17-24, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-25848989

RESUMEN

Potato is the third largest food crop in the world, however, the high degree of heterozygosity, the tetrasomic inheritance and severe inbreeding depression are major difficulties for conventional potato breeding. The rapid development of modern breeding methods offers new possibilities to enhance breeding efficiency and precise improvement of desirable traits. New site-directed mutagenesis techniques that can directly edit the target genes without any integration of recombinant DNA are especially favorable. Here we present a successful pipeline for site-directed mutagenesis in tetraploid potato through transient TALEN expression in protoplasts. The transfection efficiency of protoplasts was 38-39% and the site-directed mutation frequency was 7-8% with a few base deletions as the predominant type of mutation. Among the protoplast-derived calli, 11-13% showed mutations and a similar frequency (10%) was observed in the regenerated shoots. Our results indicate that the site-directed mutagenesis technology could be used as a new breeding method in potato as well as for functional analysis of important genes to promote sustainable potato production.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Fitomejoramiento/métodos , Poliploidía , Protoplastos/metabolismo , Solanum tuberosum/genética , Transfección/métodos , Secuencia de Bases , Perfilación de la Expresión Génica , Genoma de Planta/genética , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA