Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Treat Options Oncol ; 25(1): 97-126, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38224423

RESUMEN

OPINION STATEMENT: Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management. The last decade screened literature evidenced an increasing interest in developing natural treatment alternatives based on beehive, plant extracts, pure vegetal compounds, and bacteriocins. Promising therapeutics can also be envisaged by involving nanotechnology due to either intrinsic biological activities or drug delivery properties of nanomaterials. Despite recent progress in the field of malignant wound care, the literature is still mainly based on in vitro and in vivo studies on small animal models, while the case reports and clinical trials (less than 10 and only one providing public results) remain scarce. Some innovative treatment approaches are used in clinical practice without prior extensive testing in fungating wound patients. Extensive research is urgently needed to fill this knowledge gap and translate the identified promising therapeutic approaches to more advanced testing stages toward creating multidimensional wound care strategies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Dolor , Odorantes , Control de Infecciones , Proyectos de Investigación
2.
Antibiotics (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998837

RESUMEN

Medicinal plants with multiple targets of action have become one of the most promising solutions in the fight against multidrug-resistant (MDR) bacterial infections. Tanacetum vulgare (Tansy) is one of the medicinal plants with antibacterial qualities that deserve to be studied. Thus, this research takes a closer look at tansy extract's composition and antibacterial properties, aiming to highlight its potential against clinically relevant bacterial strains. In this respect, the antibacterial test was performed against several drug-resistant pathogenic strains, and we correlated them with the main isolated compounds, demonstrating the therapeutic properties of the extract. The essential oil was extracted via hydrodistillation, and its composition was characterized via gas chromatography. The main isolated compounds known for their antibacterial effects were α-Thujone, ß-Thujone, Eucalyptol, Sabinene, Chrysanthenon, Camphor, Linalool oxide acetate, cis-Carveol, trans-Carveyl acetate, and Germacrene. The evaluation of the antibacterial activity was carried out using the Kirby-Bauer and binary microdilution methods on Gram-positive and Gram-negative MDR strains belonging to the ESKAPE group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). Tansy essential oil showed MIC values ranging from 62.5 to 500 µg/mL against the tested strains. Synergistic activity with different classes of antibiotics (penicillins, cephalosporins, carbapenems, monobactams, aminoglycosides, and quinolones) has also been noted. The obtained results demonstrate that tansy essential oil represents a promising lead for developing new antimicrobials active against MDR alone or in combination with antibiotics.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887945

RESUMEN

Magnetite nanoparticles (Fe3O4 NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, Fe3O4 NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques. In this context, the present paper describes the development of an innovative 3D microfluidic platform suitable for synthesizing uniform Fe3O4 NPs with fine-tuned properties. On-chip co-precipitation was performed, followed by microwave-assisted silanization. The obtained nanoparticles were characterized from the compositional and microstructural perspectives by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, supplementary physicochemical investigations, such as Fourier Transform Infrared Spectroscopy (FT-IR), Kaiser Test, Ultraviolet-Visible (UV-Vis) Spectrophotometry, Dynamic Light Scattering (DLS), and Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) analyses, demonstrated the successful surface modification. Considering the positive results, the presented synthesis and functionalization method represents a fast, reliable, and effective alternative for producing tailored magnetic nanoparticles.

4.
Pharmaceutics ; 14(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214167

RESUMEN

Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA