RESUMEN
Based on the Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3) signaling pathway, this study investigated the effect of medicated serum of Sparganii Rhizoma(SR) and Curcumae Rhizoma(CR) on the proliferation, apoptosis, migration, and secretion of inflammatory factors of ectopic endometrial stromal cells(ESCs). Specifically, human ESCs were primary-cultured. The effect of different concentration(5%, 10%, 20%) of SR-, CR-, and SR-CR combination-medicated serum, and AG490 solution(50 µmol·L~(-1)) on the proliferation of ESCs was detected by methyl thiazolyl tetrazolium(MTT) assay, and the optimal dose was selected accordingly for further experiment. The cells were classified into normal serum(NS) group, SR group(10%), CR group(10%), combination(CM) group(10%), and AG490 group. The apoptosis level of ESCs was detected by flow cytometry, and the migration ability was examined by wound healing assay. The secretion of interleukin(IL)-1ß, IL-6, and tumor necrosis factor(TNF)-α was determined by enzyme-linked immunosorbent assay(ELISA). The protein levels of cysteinyl aspartate specific protei-nase-3(caspase-3), B-cell lymphoma(Bcl-2), and Bcl-2-associated X protein(Bax) and the levels of phosphorylated(p)-JAK2 and p-STAT3 were detected by Western blot. The results showed that the viability of ESCs cells was lowered in the administration groups compared with the blank serum group(P<0.01), especially the 10% drug-medicated serum, which was selected for further experiment. The 10% SR-medicated serum, 10% CR-medicated serum, and 10% CM-medicated serum could increase the apoptosis rate(P<0.01), up-regulate the protein expression of caspase-3 and Bax in cells(P<0.05 or P<0.01), down-regulate the expression of Bcl-2(P<0.01), decrease the cell migration rate(P<0.05 or P<0.01), and reduce the secretion levels of IL-1ß, IL-6, and TNF-α(P<0.05 or P<0.01), and levels of p-JAK2 and p-STAT3(P<0.05 or P<0.01). Compared with the SR and CR groups, CM group showed low cell viability(P<0.01), high protein expression of caspase-3 and Bax(P<0.05 or P<0.01), and low protein expression of Bcl-2 and p-JAK2(P<0.05). After incubation with CM, the apoptosis rate was higher(P<0.05) and the migration rate was lower(P<0.01) than that of the CR group. The p-STAT3 protein level of CM group was lower than that of the RS group(P<0.05). The mechanism of SR, CR, and the combination underlying the improvement of endometriosis may be that they blocked JAK2/STAT3 signaling pathway, inhibited ESC proliferation, promoted apoptosis, weakened cell migration, and reduced the secretion of inflammatory factors. The effect of the combination was better than that of RS alone and CR alone.
Asunto(s)
Interleucina-6 , Janus Quinasa 2 , Femenino , Humanos , Caspasa 3 , Proteína X Asociada a bcl-2 , Interleucina-6/genética , Apoptosis , Transducción de Señal , Proliferación Celular , Factor de Transcripción STAT3/genéticaRESUMEN
BACKGROUND Curcumol is a hydrogenated austenitic compound with hemiketal. In this study we evaluated the effects of curcumol on local inflammatory response, cell proliferation, and metastasis in endometriosis, and elucidated the underlying mechanisms. MATERIAL AND METHODS Ectopic endometrial stromal cells were treated with increasing doses of curcumol. The MTT assay was used to assess cell viability. FITC-labeled annexin-V/PI double-staining method and flow cytometry were used to determine cell apoptosis. Cell migration was evaluated using a wound healing assay. ELISA kits were used to detect the levels of TNF-alpha, IL-6, and IL-1ß. Western blot assay was used to examine the phosphorylation degree of JAK2 and STAT3 and the expression of Bax, Bcl2, and caspase-3 proteins. Autologous endometrial transplantation was used to establish a rat model to assess the anti-EMS effect of curcumol in vivo. RESULTS Curcumol can inhibit the proliferation of ectopic endometrial stromal cells, promote cell apoptosis, and weaken cell migration ability. Curcumol can reduce the expression of Bax and caspase-3 protein and increase the expression of Bcl2 protein. Curcumol also can inhibit the secretion of inflammatory cytokines, including tumor necrosis cytokines (TNF)-alpha, interleukin (IL)-6, and IL-1ß, by ectopic endometrial stromal cells. In addition, curcumol can also inhibit the phosphorylation of JAK2 and STAT3. In vivo experiments also proved that curcumol could inhibit the growth of ectopic lesions in EMS model rats. CONCLUSIONS Curcumol can inhibit the JAK2/STAT3 pathway, reduce the inflammatory cytokines secreted by ectopic endometrial stromal cells, inhibit cell proliferation and migration, and reduce the volume of ectopic lesions.