Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Image Anal ; 57: 197-213, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31326854

RESUMEN

BACKGROUND: Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is indicated as a determinant of CRT outcome. OBJECTIVE: Patient specific computational models allow the activation pattern following CRT implant to be predicted and this may be used to optimize CRT lead placement. METHODS: In this study, the effects of heterogeneous cardiac substrate (scar, fast endocardial conduction, slow septal conduction, functional block) on accurately predicting the electrical activation of the LV epicardium were tested to determine the minimal detail required to create a rule based model of cardiac electrophysiology. Non-invasive clinical data (CT or CMR images and 12 lead ECG) from eighteen patients from two centers were used to investigate the models. RESULTS: Validation with invasive electro-anatomical mapping data identified that computer models with fast endocardial conduction were able to predict the electrical activation with a mean distance errors of 9.2 ±â€¯0.5 mm (CMR data) or (CT data) 7.5 ±â€¯0.7 mm. CONCLUSION: This study identified a simple rule-based fast endocardial conduction model, built using non-invasive clinical data that can be used to rapidly and robustly predict the electrical activation of the heart. Pre-procedural prediction of the latest electrically activating region to identify the optimal LV pacing site could potentially be a useful clinical planning tool for CRT procedures.


Asunto(s)
Terapia de Resincronización Cardíaca , Técnicas Electrofisiológicas Cardíacas , Sistema de Conducción Cardíaco/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética , Tomografía Computarizada por Rayos X , Electrocardiografía , Mapeo Epicárdico , Humanos , Valor Predictivo de las Pruebas
2.
Int J Numer Method Biomed Eng ; 28(8): 890-903, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25099569

RESUMEN

A recent verification study compared 11 large-scale cardiac electrophysiology solvers on an unambiguously defined common problem. An unexpected amount of variation was observed between the codes, including significant error in conduction velocity in the majority of the codes at certain spatial resolutions. In particular, the results of the six finite element codes varied considerably despite each using the same order of interpolation. In this present study, we compare various algorithms for cardiac electrophysiological simulation, which allows us to fully explain the differences between the solvers. We identify the use of mass lumping as the fundamental cause of the largest variations, specifically the combination of the commonly used techniques of mass lumping and operator splitting, which results in a slightly different form of mass lumping to that supported by theory and leads to increased numerical error. Other variations are explained through the manner in which the ionic current is interpolated. We also investigate the effect of different forms of mass lumping in various types of simulation.


Asunto(s)
Electrofisiología Cardíaca/métodos , Algoritmos , Animales , Simulación por Computador , Técnicas Electrofisiológicas Cardíacas/métodos , Análisis de Elementos Finitos , Sistema de Conducción Cardíaco/fisiología , Modelos Cardiovasculares , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA