RESUMEN
Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)2) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies. Besides the morphology and compositional characterization of these core/shell nanowires, their peculiar magnetic properties have been studied by temperature dependent (isothermal) hysteresis loops, thermomagnetic curves and FORC analysis, revealing the existence of two different effects derived from Ni nanowires' surface oxidation over the magnetic performance of the array. First of all, a magnetic hardening of the nanowires along the parallel direction of the applied magnetic field with respect their long axis (easy magnetization axis) has been found. The increase in coercivity, as an effect of surface oxidation, has been observed to be around 17% (43%) at 300 K (50 K). On the other hand, an increasing exchange bias effect on decreasing temperature has been encountered when field cooling (3T) the oxidized Ni@(NiO,Ni(OH)2) nanowires below 100 K along their parallel lengths.
Asunto(s)
Nanoporos , Nanocables , Nanocables/química , Óxido de Aluminio , Níquel/química , Nanotecnología/métodosRESUMEN
Nanoporous anodic alumina membranes (NPAMs) were produced by the two-step anodization method in sulphuric, oxalic and phosphoric acidic electrolytes displaying a hexagonally ordered spatial arrangement of pores with well controlled nanopore size distribution and low porosity. Some selected NPAMs were further modified by conformal coating their surface and inner pore walls with a thin layer of SiO2 by means of atomic layer deposition (ALD), which reduces both the pore radii and porosity but it also seems to affect to the electric fixed charge on the membranes surface. A comparative study about the influence of silica modification of NPAMs surfaces on the ionic transport through the nanoporous membranes has been performed by measuring membrane potentials and electrochemical impedance spectroscopy with NaCl solutions. According to these results, a direct correlation between the membrane effective fixed charge and the NaCl diffusion coefficient can be established. The coating with a SiO2 thin layer causes a reduction of 75% in the positive effective fixed charge of the NPAMs independently of their pore radii and the increase in counterion transport (cation transport number and diffusion coefficient) even through constrained nanopores, which can be of interest in several applications (microfluidics, drug delivery, nanofilter devices, etc.). Moreover, slight changes in the membrane/solution interface due to the SiO2 cover layer are also indicated.
Asunto(s)
Óxido de Aluminio/química , Membranas Artificiales , Nanoporos , Dióxido de Silicio/química , Transporte Iónico , Potenciales de la Membrana , Propiedades de SuperficieRESUMEN
We present a systematic study about the influence of the main anodization parameters (i.e., anodization voltage ramp and hard anodization voltage) on the pore rearrangement in nanoporous anodic alumina during mild to hard anodization regime transition. To cover the ranges between mild and hard regimes, the anodization parameters were each set to three levels (i.e., 0.5, 1.0, and 2.0 V s(-1) for the anodization voltage ramp and 80, 110, and 140 V for the hard anodization voltage). To the best of our knowledge, this is the first rigorous study about this phenomenon, which is quantified indirectly by means of a nickel electrodeposition. It is found that pore rearrangement takes place in a relatively random manner. Large areas of pores remain blocked when the anodization regime changes from mild to hard and, under certain anodization conditions, a pore branching takes place based on the self-ordering mechanism at work during anodization. Furthermore, it is statistically demonstrated by means of a design of experiments strategy that the effect of the anodization voltage ramp on the pore rearrangement is practically negligible in contrast to the hard anodization voltage effect. It is expected that this study gives a better understanding of structural changes in nanoporous anodic alumina when anodization is switched from mild to hard regime. Furthermore, the resulting nanostructures could be used to develop a wide range of nanodevices (e.g., waveguides, 1D photonic crystals, Fabry-Pérot interferometers, hybrid mosaic arrays of nanowires).
Asunto(s)
Óxido de Aluminio/química , Electroquímica/métodos , Nanoestructuras/química , Nanotecnología/métodos , PorosidadRESUMEN
The synthesis of horizontal porous anodic alumina (PAA) structures with individually addressable channel systems is demonstrated. This was achieved by developing a multicontact design of aluminum finger structures (two to five contacts) on silicon wafers. These aluminum contacts were electrically isolated from each other, allowing the individual anodization of each contact at different conditions. This way it is possible to synthesize different pore diameters, pore densities, and channel lengths on a single chip. Scanning electron microscopy (SEM) characterization revealed that the neighboring contacts are not significantly altered during the anodization procedure. After successful barrier-layer thinning, the individual finger structures of each contact were filled by electrodeposition and thermal chemical vapor deposition. The resulting metal (Au, Cu, Ni, Co) and semiconductor (Te, Si) nanowires embedded within the porous anodic alumina mold were characterized by SEM and energy dispersive X-ray measurements. The multicontact fabrication results open a new route toward complex nanoelectronic and sensing applications.
Asunto(s)
Óxido de Aluminio/síntesis química , Nanotecnología/instrumentación , Nanocables/química , Óxido de Aluminio/química , Tamaño de la Partícula , Porosidad , Propiedades de SuperficieRESUMEN
The self-ordering of nanoporous anodic aluminum oxide (AAO) in the course of the hard anodization (HA) of aluminum in sulfuric acid (H2SO4) solutions at anodization voltages ranging from 27 to 80 V was investigated. Direct H2SO4-HA yielded AAOs with hexagonal pore arrays having interpore distances D(int) ranging from 72 to 145 nm. However, the AAOs were mechanically unstable and cracks formed along the cell boundaries. Therefore, we modified the anodization procedure previously employed for oxalic acid HA (H2C2O4-HA) to suppress the development of cracks and to fabricate mechanically robust AAO films with D(int) values ranging from 78 to 114 nm. Image analyses based on scanning electron micrographs revealed that at a given anodization voltage the self-ordering of nanopores as well as D(int) depend on the current density (i.e., the electric field strength at the bottoms of the pores). Moreover, periodic oscillations of the pore diameter formed at anodization voltages in the range from 27 to 32 V, which are reminiscent of structures originating from the spontaneous growth of periodic fluctuations, such as topologies resulting from Rayleigh instabilities.
Asunto(s)
Óxido de Aluminio/química , Cristalización/métodos , Galvanoplastia/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Ácidos Sulfúricos/química , Electrodos , Dureza , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie , Resistencia a la TracciónRESUMEN
The Kirkendall effect has been widely applied for fabrication of nanoscale hollow structures, which involves an unbalanced counterdiffusion through a reaction interface. Conventional treatment of this process only considers the bulk diffusion of growth species and vacancies. In this letter, a conceptual extension is proposed: the development of the hollow interior undergoes two main stages. The initial stage is the generation of small Kirkendall voids intersecting the compound interface via a bulk diffusion process; the second stage is dominated by surface diffusion of the core material (viz., the fast-diffusing species) along the pore surface. This concept applies to spherical as well as cylindrical nanometer and microscale structures, and even to macroscopic bilayers. As supporting evidence, we show the results of a spinel-forming solid-state reaction of core-shell nanowires, as well as of a planar bilayer of ZnO-Al2O3 to illustrate the influence of surface diffusion on the morphology evolution.