Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 13(8): 8669-8679, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31268674

RESUMEN

Understanding protein folding and unfolding has been a long-standing fundamental question and has important applications in manipulating protein activity in biological systems. Experimental investigations of protein unfolding have been predominately conducted by small temperature perturbations (e.g., temperature jump), while molecular simulations are limited to small time scales (microseconds) and high temperatures to observe unfolding. Thus, it remains unclear how fast a protein unfolds irreversibly and loses function (i.e., inactivation) across a large temperature range. In this work, using nanosecond pulsed heating of individual plasmonic nanoparticles to create precise localized heating, we examine the protein inactivation kinetics at extremely high temperatures. Connecting this with protein inactivation measurements at low temperatures, we observe that the kinetics of protein unfolding is less sensitive to temperature change at the higher temperatures, which significantly departs from the Arrhenius behavior extrapolated from low temperatures. To account for this effect, we propose a reaction-diffusion model that modifies the temperature-dependence of protein inactivation by introducing a diffusion limit. Analysis of the reaction-diffusion model provides general guidelines in the behavior of protein inactivation (reaction-limited, transition, diffusion-limited) across a large temperature range from physiological temperature to extremely high temperatures. We further demonstrate that the reaction-diffusion model is particularly useful for designing optimal operating conditions for protein photoinactivation. The experimentally validated reaction-diffusion kinetics of protein unfolding is an important step toward understanding protein-inactivation kinetics over a large temperature range. It has important applications including molecular hyperthermia and calls for future studies to examine this model for other protein molecules.


Asunto(s)
Hipertermia Inducida/métodos , Nanopartículas/química , Proteínas/química , Biología de Sistemas , Calefacción , Calor/efectos adversos , Humanos , Cinética , Nanopartículas/uso terapéutico , Pliegue de Proteína/efectos de los fármacos , Desplegamiento Proteico/efectos de los fármacos
2.
J Am Chem Soc ; 140(49): 17226-17233, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30452248

RESUMEN

In this Article, we show that the surface of the bacteriophage Qß is equipped with natural ligands for the synthesis of small gold nanoparticles (AuNPs). By exploiting disulfides in the protein secondary structure and the geometry formed from the capsid quaternary structure, we find that we can produce regularly arrayed patterns of ∼6 nm AuNPs across the surface of the virus-like particle. Experimental and computational analyses provide insight into the formation and stability of this composite. We further show that the entrapped genetic material can hold upward of 500 molecules of the anticancer drug Doxorubicin without leaking and without interfering with the synthesis of the AuNPs. This direct nucleation of nanoparticles on the capsid allows for exceptional conduction of photothermal energy upon nanosecond laser irradiation. As a proof of principle, we demonstrate that this energy is capable of rapidly releasing the drug from the capsid without heating the bulk solution, allowing for highly targeted cell killing in vitro.


Asunto(s)
Allolevivirus/química , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/química , Oro/química , Nanopartículas del Metal/química , Células A549 , Animales , Antineoplásicos/química , Cápside/química , Proteínas de la Cápside/química , Doxorrubicina/química , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Oro/efectos de la radiación , Oro/toxicidad , Humanos , Hipertermia Inducida/métodos , Luz , Nanopartículas del Metal/efectos de la radiación , Nanopartículas del Metal/toxicidad , Ratones , Tamaño de la Partícula , Fototerapia/métodos , Porosidad , Prueba de Estudio Conceptual , Células RAW 264.7 , ARN/química , ARN/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA