Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
eNeuro ; 10(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37221090

RESUMEN

The imagination of tactile stimulation has been shown to activate primary somatosensory cortex (S1) with a somatotopic specificity akin to that seen during the perception of tactile stimuli. Using fMRI and multivariate pattern analysis, we investigate whether this recruitment of sensory regions also reflects content-specific activation (i.e., whether the activation in S1 is specific to the mental content participants imagined). To this end, healthy volunteers (n = 21) either perceived or imagined three types of vibrotactile stimuli (mental content) while fMRI data were acquired. Independent of the content, during tactile mental imagery we found activation of frontoparietal regions, supplemented with activation in the contralateral BA2 subregion of S1, replicating previous reports. While the imagery of the three different stimuli did not reveal univariate activation differences, using multivariate pattern classification, we were able to decode the imagined stimulus type from BA2. Moreover, cross-classification revealed that tactile imagery elicits activation patterns similar to those evoked by the perception of the respective stimuli. These findings promote the idea that mental tactile imagery involves the recruitment of content-specific activation patterns in sensory cortices, namely in S1.


Asunto(s)
Mapeo Encefálico , Corteza Somatosensorial , Humanos , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiología , Lóbulo Parietal/fisiología , Tacto , Imaginación/fisiología , Imagen por Resonancia Magnética
2.
J Physiol ; 599(9): 2435-2451, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31696938

RESUMEN

KEY POINTS: Two groups of inexperienced brain-computer interface users underwent a purely mental EEG-BCI session that rapidly impacted on their brain. Modulations in structural and functional MRI were found after only 1 h of BCI training. Two different types of BCI (based on motor imagery or visually evoked potentials) were employed and analyses showed that the brain plastic changes are spatially specific for the respective neurofeedback. This spatial specificity promises tailored therapeutic interventions (e.g. for stroke patients). ABSTRACT: A brain-computer-interface (BCI) allows humans to control computational devices using only neural signals. However, it is still an open question, whether performing BCI also impacts on the brain itself, i.e. whether brain plasticity is induced. Here, we show rapid and spatially specific signs of brain plasticity measured with functional and structural MRI after only 1 h of purely mental BCI training in BCI-naive subjects. We employed two BCI approaches with neurofeedback based on (i) modulations of EEG rhythms by motor imagery (MI-BCI) or (ii) event-related potentials elicited by visually targeting flashing letters (ERP-BCI). Before and after the BCI session we performed structural and functional MRI. For both BCI approaches we found increased T1-weighted MR signal in the grey matter of the respective target brain regions, such as occipital/parietal areas after ERP-BCI and precuneus and sensorimotor regions after MI-BCI. The latter also showed increased functional connectivity and higher task-evoked BOLD activity in the same areas. Our results demonstrate for the first time that BCI by means of targeted neurofeedback rapidly impacts on MRI measures of brain structure and function. The spatial specificity of BCI-induced brain plasticity promises therapeutic interventions tailored to individual functional deficits, for example in patients after stroke.


Asunto(s)
Interfaces Cerebro-Computador , Neurorretroalimentación , Encéfalo/diagnóstico por imagen , Electroencefalografía , Humanos , Imaginación , Plasticidad Neuronal
3.
Sci Rep ; 10(1): 18686, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122651

RESUMEN

Different pharmacologic agents have been used to investigate the neuronal underpinnings of alterations in consciousness states, such as psychedelic substances. Special attention has been drawn to the role of thalamic filtering of cortical input. Here, we investigate the neuronal mechanisms underlying an altered state of consciousness (ASC) induced by a non-pharmacological procedure. During fMRI scanning, N = 19 human participants were exposed to multimodal Ganzfeld stimulation, a technique of perceptual deprivation where participants are exposed to intense, unstructured, homogenous visual and auditory stimulation. Compared to pre- and post-resting-state scans, the Ganzfeld data displayed a progressive decoupling of the thalamus from the cortex. Furthermore, the Ganzfeld-induced ASC was characterized by increased eigenvector centrality in core regions of the default mode network (DMN). Together, these findings can be interpreted as an imbalance of sensory bottom-up signaling and internally-generated top-down signaling. This imbalance is antithetical to psychedelic-induced ASCs, where increased thalamo-cortical coupling and reduced DMN activity were observed.


Asunto(s)
Corteza Cerebral/fisiología , Trastornos de la Conciencia , Tálamo/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Adulto Joven
4.
Front Neurosci ; 13: 147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30914909

RESUMEN

Xingnao Kaiqiao (XNKQ) acupuncture is an acupuncture technique used for stroke patients. In 24 healthy volunteers, we applied this complex acupuncture intervention, which consists of a manual needle-stimulation on five acupuncture points (DU26 unilaterally, PC6, and SP6 bilaterally). XNKQ was compared to three control conditions: (1) insertion of needles on the XNKQ acupuncture points without stimulation, (2) manual needle-stimulation on five nearby non-acupuncture points, and (3) insertion of needles on the non-acupuncture points without stimulation. In a within-subject design, we investigated functional connectivity changes in resting-state functional magnetic resonance imaging (fMRI) by means of the data-driven eigenvector centrality (EC) approach. With a 2 × 2 factorial within-subjects design with two-factor stimulation (stimulation vs. non-stimulation) and location (acupuncture points vs. non-acupuncture points), we found decreased EC in the precuneus after needle-stimulation (stimulation

5.
Front Neurosci ; 13: 100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804749

RESUMEN

Acupuncture is widely applied all over the world. Although the neurobiological underpinnings of acupuncture still remain unclear, accumulating evidence indicates significant alteration of brain activities in response to acupuncture. In particular, activities of brain regions in the default mode network (DMN) are modulated by acupuncture. DMN is crucial for maintaining physiological homeostasis and its functional architecture becomes disrupted in various disorders. But how acupuncture modulates brain functions and whether such modulation constitutes core mechanisms of acupuncture treatment are far from clear. This Perspective integrates recent literature on interactions between acupuncture and functional networks including the DMN, and proposes a back-translational research strategy to elucidate brain mechanisms of acupuncture treatment.

6.
Front Hum Neurosci ; 10: 510, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803655

RESUMEN

Acupuncture can have instant and sustained effects, however, its mechanisms of action are still unclear. Here, we investigated the sustained effect of acupuncture by evaluating centrality changes in resting-state functional magnetic resonance imaging after manually stimulating the acupuncture point ST36 at the lower leg or two control point locations (CP1 same dermatome, CP2 different dermatome). Data from a previously published experiment evaluating instant BOLD effects and S2-seed-based resting state connectivity was re-analyzed using eigenvector centrality mapping and degree centrality mapping. These data-driven methods might add new insights into sustained acupuncture effects on both global and local inter-region connectivity (centrality) by evaluating the summary of connections of every voxel. We found higher centrality in parahippocampal gyrus and middle temporal gyrus after ST36 stimulation in comparison to the two control points. These regions are positively correlated to major hubs of the default mode network, which might be the primary network affected by chronic pain. The stronger integration of both regions within the whole-brain connectome after stimulation of ST36 might be a potential contributor to pain modulation by acupuncture. These findings highlight centrality mapping as a valuable analysis for future imaging studies investigating clinically relevant outcomes associated with physiological response to acupuncture stimulation. CLINICAL TRIAL REGISTRATION: NCT01079689, ClinicalTrials.gov.

8.
Cereb Cortex ; 26(7): 3116-24, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26108612

RESUMEN

Trance is an absorptive state of consciousness characterized by narrowed awareness of external surroundings and has long been used-for example, by shamans-to gain insight. Shamans across cultures often induce trance by listening to rhythmic drumming. Using functional magnetic resonance imaging (fMRI), we examined the brain-network configuration associated with trance. Experienced shamanic practitioners (n = 15) listened to rhythmic drumming, and either entered a trance state or remained in a nontrance state during 8-min scans. We analyzed changes in network connectivity. Trance was associated with higher eigenvector centrality (i.e., stronger hubs) in 3 regions: posterior cingulate cortex (PCC), dorsal anterior cingulate cortex (dACC), and left insula/operculum. Seed-based analysis revealed increased coactivation of the PCC (a default network hub involved in internally oriented cognitive states) with the dACC and insula (control-network regions involved in maintaining relevant neural streams). This coactivation suggests that an internally oriented neural stream was amplified by the modulatory control network. Additionally, during trance, seeds within the auditory pathway were less connected, possibly indicating perceptual decoupling and suppression of the repetitive auditory stimuli. In sum, trance involved coactive default and control networks, and decoupled sensory processing. This network reconfiguration may promote an extended internal train of thought wherein integration and insight can occur.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Percepción/fisiología , Adulto , Anciano , Vías Auditivas/diagnóstico por imagen , Vías Auditivas/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Descanso , Autoinforme , Chamanismo , Pensamiento/fisiología
9.
Front Hum Neurosci ; 9: 74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25741269

RESUMEN

Acupuncture can be regarded as a complex somatosensory stimulation. Here, we evaluate whether the point locations chosen for a somatosensory stimulation with acupuncture needles differently change the brain activity in healthy volunteers. We used EEG, event-related fMRI, and resting-state functional connectivity fMRI to assess neural responses to standardized needle stimulation of the acupuncture point ST36 (lower leg) and two control point locations (CP1 same dermatome, CP2 different dermatome). Cerebral responses were expected to differ for stimulation in two different dermatomes (CP2 different from ST36 and CP1), or stimulation at the acupuncture point vs. the control points. For EEG, mu rhythm power increased for ST36 compared to CP1 or CP2, but not when comparing the two control points. The fMRI analysis found more pronounced insula and S2 (secondary somatosensory cortex) activation, as well as precuneus deactivation during ST36 stimulation. The S2 seed-based functional connectivity analysis revealed increased connectivity to right precuneus for both comparisons, ST36 vs. CP1 and ST36 vs. CP2, however in different regions. Our results suggest that stimulation at acupuncture points may modulate somatosensory and saliency processing regions more readily than stimulation at non-acupuncture point locations. Also, our findings suggest potential modulation of pain perception due to acupuncture stimulation.

10.
PLoS One ; 7(4): e32960, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496739

RESUMEN

BACKGROUND: The mechanisms of action underlying acupuncture, including acupuncture point specificity, are not well understood. In the previous decade, an increasing number of studies have applied fMRI to investigate brain response to acupuncture stimulation. Our aim was to provide a systematic overview of acupuncture fMRI research considering the following aspects: 1) differences between verum and sham acupuncture, 2) differences due to various methods of acupuncture manipulation, 3) differences between patients and healthy volunteers, 4) differences between different acupuncture points. METHODOLOGY/PRINCIPAL FINDINGS: We systematically searched English, Chinese, Korean and Japanese databases for literature published from the earliest available up until September 2009, without any language restrictions. We included all studies using fMRI to investigate the effect of acupuncture on the human brain (at least one group that received needle-based acupuncture). 779 papers were identified, 149 met the inclusion criteria for the descriptive analysis, and 34 were eligible for the meta-analyses. From a descriptive perspective, multiple studies reported that acupuncture modulates activity within specific brain areas, including somatosensory cortices, limbic system, basal ganglia, brain stem, and cerebellum. Meta-analyses for verum acupuncture stimuli confirmed brain activity within many of the regions mentioned above. Differences between verum and sham acupuncture were noted in brain response in middle cingulate, while some heterogeneity was noted for other regions depending on how such meta-analyses were performed, such as sensorimotor cortices, limbic regions, and cerebellum. CONCLUSIONS: Brain response to acupuncture stimuli encompasses a broad network of regions consistent with not just somatosensory, but also affective and cognitive processing. While the results were heterogeneous, from a descriptive perspective most studies suggest that acupuncture can modulate the activity within specific brain areas, and the evidence based on meta-analyses confirmed some of these results. More high quality studies with more transparent methodology are needed to improve the consistency amongst different studies.


Asunto(s)
Terapia por Acupuntura , Mapeo Encefálico , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Neuroimagen , Estudios de Casos y Controles , Humanos , Metaanálisis como Asunto , Literatura de Revisión como Asunto
11.
J Neurosci ; 29(47): 14726-33, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19940167

RESUMEN

Understanding the rapidly developing building blocks of speech perception in infancy requires a close look at the auditory prerequisites for speech sound processing. Pioneering studies have demonstrated that hemispheric specializations for language processing are already present in early infancy. However, whether these computational asymmetries can be considered a function of linguistic attributes or a consequence of basic temporal signal properties is under debate. Several studies in adults link hemispheric specialization for certain aspects of speech perception to an asymmetry in cortical tuning and reveal that the auditory cortices are differentially sensitive to spectrotemporal features of speech. Applying concurrent electrophysiological (EEG) and hemodynamic (near-infrared spectroscopy) recording to newborn infants listening to temporally structured nonspeech signals, we provide evidence that newborns process nonlinguistic acoustic stimuli that share critical temporal features with language in a differential manner. The newborn brain preferentially processes temporal modulations especially relevant for phoneme perception. In line with multi-time-resolution conceptions, modulations on the time scale of phonemes elicit strong bilateral cortical responses. Our data furthermore suggest that responses to slow acoustic modulations are lateralized to the right hemisphere. That is, the newborn auditory cortex is sensitive to the temporal structure of the auditory input and shows an emerging tendency for functional asymmetry. Hence, our findings support the hypothesis that development of speech perception is linked to basic capacities in auditory processing. From birth, the brain is tuned to critical temporal properties of linguistic signals to facilitate one of the major needs of humans: to communicate.


Asunto(s)
Corteza Auditiva/crecimiento & desarrollo , Percepción Auditiva/fisiología , Percepción del Habla/fisiología , Percepción del Tiempo/fisiología , Conducta Verbal/fisiología , Estimulación Acústica , Dominancia Cerebral/fisiología , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Femenino , Lateralidad Funcional/fisiología , Humanos , Recién Nacido , Lenguaje , Masculino , Pruebas Neuropsicológicas , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA