Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Virol ; 163(8): 2121-2131, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29633078

RESUMEN

Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.


Asunto(s)
Antivirales/farmacología , Embelia/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/virología , Extractos Vegetales/farmacología , Antivirales/química , Benzoquinonas/química , Benzoquinonas/farmacología , Humanos , Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Extractos Vegetales/química
2.
J Dev Biol ; 6(1)2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29615555

RESUMEN

The zebrafish is an established model to study the development and function of visual neuronal circuits in vivo, largely due to their optical accessibility at embryonic and larval stages. In the past decade multiple experimental paradigms have been developed to study visually-driven behaviours, particularly those regulated by the optic tectum, the main visual centre in lower vertebrates. With few exceptions these techniques are limited to young larvae (7-9 days post-fertilisation, dpf). However, many forms of visually-driven behaviour, such as shoaling, emerge at later developmental stages. Consequently, there is a need for an experimental paradigm to image the visual system in zebrafish larvae beyond 9 dpf. Here, we show that using NBT:GCaMP3 line allows for imaging neuronal activity in the optic tectum in late stage larvae until at least 21 dpf. Utilising this line, we have characterised the receptive field properties of tectal neurons of the 2-3 weeks old fish in the cell bodies and the neuropil. The NBT:GCaMP3 line provides a complementary approach and additional opportunities to study neuronal activity in late stage zebrafish larvae.

3.
Biometals ; 25(6): 1221-33, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22983762

RESUMEN

To investigate the mechanisms of Ni(2+) effects on initiation and maintenance of polar cell growth, we used a well-studied model system-germination of angiosperm pollen grains. In liquid medium tobacco pollen grain forms a long tube, where the growth is restricted to the very tip. Ni(2+) did not prevent the formation of pollen tube initials, but inhibited their subsequent growth with IC(50) = 550 µM. 1 mM Ni(2+) completely blocked the polar growth, but all pollen grains remained viable, their respiration was slightly affected and ROS production did not increase. Addition of Ni(2+) after the onset of germination had a bidirectional effect on the tubes development: there was a considerable amount of extra-long tubes, which appeared to be rapidly growing, but the growth of many tubes was impaired. Studying the localization of possible targets of Ni(2+) influence, we found that they may occur both in the wall and in the cytoplasm, as confirmed by specific staining. Ni(2+) disturbed the segregation of transport vesicles in the tips of these tubes and significantly reduced the relative content of calcium in the aperture area of pollen grains, as measured by X-ray microanalysis. These factors are considered being critical for normal polar cell growth. Ni(2+) also causes the deposition of callose in the tips of the tube initials and the pollen tubes that had stopped their growth. We can assume that Ni(2+)-induced disruption of calcium homeostasis can lead to vesicle traffic impairment and abnormal callose deposition and, consequently, block the polar growth.


Asunto(s)
Germinación/efectos de los fármacos , Níquel/farmacología , Nicotiana/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Pared Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Tubo Polínico/citología , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA