Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 102(8): 975-85, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18309098

RESUMEN

Because of its complexity, the atrioventricular node (AVN), remains 1 of the least understood regions of the heart. The aim of the study was to construct a detailed anatomic model of the AVN and relate it to AVN function. The electric activity of a rabbit AVN preparation was imaged using voltage-dependent dye. The preparation was then fixed and sectioned. Sixty-five sections at 60- to 340-microm intervals were stained for histology and immunolabeled for neurofilament (marker of nodal tissue) and connexin43 (gap junction protein). This revealed multiple structures within and around the AVN, including transitional tissue, inferior nodal extension, penetrating bundle, His bundle, atrial and ventricular muscle, central fibrous body, tendon of Todaro, and valves. A 3D anatomically detailed mathematical model (approximately 13 million element array) of the AVN and surrounding atrium and ventricle, incorporating all cell types, was constructed. Comparison of the model with electric activity recorded in experiments suggests that the inferior nodal extension forms the slow pathway, whereas the transitional tissue forms the fast pathway into the AVN. In addition, it suggests the pacemaker activity of the atrioventricular junction originates in the inferior nodal extension. Computer simulation of the propagation of the action potential through the anatomic model shows how, because of the complex structure of the AVN, reentry (slow-fast and fast-slow) can occur. In summary, a mathematical model of the anatomy of the AVN has been generated that allows AVN conduction to be explored.


Asunto(s)
Nodo Atrioventricular/anatomía & histología , Nodo Atrioventricular/fisiología , Simulación por Computador , Imagenología Tridimensional/métodos , Modelos Cardiovasculares , Potenciales de Acción , Animales , Técnicas Electrofisiológicas Cardíacas , Conejos
2.
J Electrocardiol ; 38(4 Suppl): 121-5, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16226086

RESUMEN

In the normal heart, the atrioventricular node (AVN) is part of the sole pathway between the atria and ventricles, and is responsible for the appropriate atrial-ventricular delay. Under normal physiological conditions, the AVN controls appropriate frequency-dependent delay of contractions. The AVN also plays an important role in pathology: it protects ventricles during atrial tachyarrhythmia, and during sinoatrial node failure the atrioventricular (AV) junction assumes the role of pacemaker. Finally, the AV junction provides an anatomic substrate for AV nodal reentrant tachycardia, which is the most prevalent supraventricular tachycardia in humans. Using fluorescent imaging with voltage-sensitive dye and immunohistochemistry, we have investigated the structure-function relationship of the atrioventricular (AV) junction during normal conduction, reentry, and junctional rhythm. We identified the site of origin of junctional rhythm at the posterior extension of the AV node (AVN) in 78% (n=23) of the studied hearts and we found that this pacemaker is sensitive to autonomic control. For instance, when the autonomic nervous system was activated using subthreshold stimulation, a transient accelerated junctional rhythm was observed when subthreshold stimulation was terminated. A very similar phenomenon is observed clinically during slow pathway ablations treating AV nodal reentrant tachycardia (AVNRT). The autonomic control of the AV junction was investigated using immunohistochemistry, showing that the AV junction of the rabbit is very densely innervated with both cholinergic and adrenergic neurons. The posterior AV nodal extension was similar to the compact AVN as determined by morphologic and molecular investigations. In particular, both the posterior extension and the compact node express the pacemaking channel HCN4 (responsible for the IF current) and neurofilament 160. In the rabbit heart, AV junction conduction, reentrant arrhythmia, and spontaneous rhythm are governed by heterogeneity of expression of several isoforms of gap junctions and ion channels, and these properties are regulated by the autonomic nervous system. Uniform neurofilament expression suggests that AV nodal posterior extensions are an integral part of the cardiac pacemaking and conduction system.


Asunto(s)
Nodo Atrioventricular/inervación , Nodo Atrioventricular/patología , Potenciales de Acción , Animales , Función Atrial , Nodo Atrioventricular/anatomía & histología , Nodo Atrioventricular/fisiopatología , Sistema Nervioso Autónomo/patología , Sistema Nervioso Autónomo/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Humanos , Inmunohistoquímica , Taquicardia por Reentrada en el Nodo Atrioventricular/patología , Taquicardia por Reentrada en el Nodo Atrioventricular/fisiopatología
3.
Circ Res ; 95(1): 21-33, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15242982

RESUMEN

Optical techniques have revolutionized the investigation of cardiac cellular physiology and advanced our understanding of basic mechanisms of electrical activity, calcium homeostasis, and metabolism. Although optical methods are widely accepted and have been at the forefront of scientific discoveries, they have been primarily applied at cellular and subcellular levels and considerably less to whole heart organ physiology. Numerous technical difficulties had to be overcome to dynamically map physiological processes in intact hearts by optical methods. Problems of contraction artifacts, cellular heterogeneities, spatial and temporal resolution, limitations of surface images, depth-of-field, and need for large fields of view (ranging from 2x2 mm2 to 3x3 cm2) have all led to the development of new devices and optical probes to monitor physiological parameters in intact hearts. This review aims to provide a critical overview of current approaches, their contributions to the field of cardiac electrophysiology, and future directions of various optical imaging modalities as applied to cardiac physiology at organ and tissue levels.


Asunto(s)
Electrofisiología/métodos , Corazón/fisiología , Óptica y Fotónica , Potenciales de Acción , Animales , Mapeo del Potencial de Superficie Corporal/métodos , Calcio/metabolismo , Cardioversión Eléctrica , Terapia por Estimulación Eléctrica , Colorantes Fluorescentes/química , Corazón/embriología , Corazón/crecimiento & desarrollo , Sistema de Conducción Cardíaco/fisiología , Ratones , Ratones Transgénicos , Microscopía/métodos , Óptica y Fotónica/instrumentación , Taquicardia/fisiopatología
4.
Circ Res ; 93(11): 1102-10, 2003 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-14563715

RESUMEN

During failure of the sinoatrial node, the heart can be driven by an atrioventricular (AV) junctional pacemaker. The position of the leading pacemaker site during AV junctional rhythm is debated. In this study, we present evidence from high-resolution fluorescent imaging of electrical activity in rabbit isolated atrioventricular node (AVN) preparations that, in the majority of cases (11 out of 14), the AV junctional rhythm originates in the region extending from the AVN toward the coronary sinus along the tricuspid valve (posterior nodal extension, PNE). Histological and immunohistochemical investigation showed that the PNE has the same morphology and unique pattern of expression of neurofilament160 (NF160) and connexins (Cx40, Cx43, and Cx45) as the AVN itself. Block of the pacemaker current, If, by 2 mmol/L Cs+ increased the AV junctional rhythm cycle length from 611+/-84 to 949+/-120 ms (mean+/-SD, n=6, P<0.001). Immunohistochemical investigation showed that the principal If channel protein, HCN4, is abundant in the PNE. As well as the AV junctional rhythm, the PNE described in this study may also be involved in the slow pathway of conduction into the AVN as well as AVN reentry, and the predominant lack of expression of Cx43 as well as the presence of Cx45 in the PNE shown could help explain its slow conduction.


Asunto(s)
Nodo Atrioventricular/fisiología , Frecuencia Cardíaca , Periodicidad , Animales , Función Atrial/efectos de los fármacos , Función Atrial/fisiología , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/metabolismo , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/fisiología , Mapeo del Potencial de Superficie Corporal , Cesio/farmacología , Conexina 43/análisis , Conexinas/biosíntesis , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Canales Iónicos/biosíntesis , Proteínas Musculares/biosíntesis , Proteínas de Neurofilamentos/biosíntesis , Óptica y Fotónica , Canales de Potasio , Compuestos de Piridinio , Conejos , Nodo Sinoatrial/fisiología , Proteína alfa-5 de Unión Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA