Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 11(1): 10411, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34002002

RESUMEN

TRPM4 is a calcium-activated non-selective monovalent cation channel implicated in diseases such as stroke. Lack of potent and selective inhibitors remains a major challenge for studying TRPM4. Using a polypeptide from rat TRPM4, we have generated a polyclonal antibody M4P which could alleviate reperfusion injury in a rat model of stroke. Here, we aim to develop a monoclonal antibody that could block human TRPM4 channel. Two mouse monoclonal antibodies M4M and M4M1 were developed to target an extracellular epitope of human TRPM4. Immunohistochemistry and western blot were used to characterize the binding of these antibodies to human TRPM4. Potency of inhibition was compared using electrophysiological methods. We further evaluated the therapeutic potential on a rat model of middle cerebral artery occlusion. Both M4M and M4M1 could bind to human TRPM4 channel on the surface of live cells. Prolonged incubation with TRPM4 blocking antibody internalized surface TRPM4. Comparing to M4M1, M4M is more effective in blocking human TRPM4 channel. In human brain microvascular endothelial cells, M4M successfully inhibited TRPM4 current and ameliorated hypoxia-induced cell swelling. Using wild type rats, neither antibody demonstrated therapeutic potential on stroke. Human TRPM4 channel can be blocked by a monoclonal antibody M4M targeting a key antigenic sequence. For future clinical translation, the antibody needs to be humanized and a transgenic animal carrying human TRPM4 sequence is required for in vivo characterizing its therapeutic potential.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Canales Catiónicos TRPM/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/uso terapéutico , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células HEK293 , Humanos , Infarto de la Arteria Cerebral Media/complicaciones , Masculino , Técnicas de Placa-Clamp , Ratas , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Canales Catiónicos TRPM/metabolismo
2.
Life Sci Alliance ; 3(9)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699151

RESUMEN

Diabetic cardiomyopathy (DCM) is a major cause of mortality/morbidity in diabetes mellitus patients. Although tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous cardiovascular target, its effect on myocardial cells and mitochondria in DCM and the underlying mechanisms remain unknown. Here, we determined the involvement of BH4 deficiency in DCM and the therapeutic potential of BH4 supplementation in a rodent DCM model. We observed a decreased BH4:total biopterin ratio in heart and mitochondria accompanied by cardiac remodeling, lower cardiac contractility, and mitochondrial dysfunction. Prolonged BH4 supplementation improved cardiac function, corrected morphological abnormalities in cardiac muscle, and increased mitochondrial activity. Proteomics analysis revealed oxidative phosphorylation (OXPHOS) as the BH4-targeted biological pathway in diabetic hearts as well as BH4-mediated rescue of down-regulated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) signaling as a key modulator of OXPHOS and mitochondrial biogenesis. Mechanistically, BH4 bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and activated downstream AMP-activated protein kinase/cAMP response element binding protein/PGC-1α signaling to rescue mitochondrial and cardiac dysfunction in DCM. These results suggest BH4 as a novel endogenous activator of CaMKK2.


Asunto(s)
Biopterinas/análogos & derivados , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/genética , Animales , Biopterinas/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Corazón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Biogénesis de Organelos , Fosforilación Oxidativa , Ratas , Ratas Long-Evans , Transducción de Señal/fisiología
3.
Brain ; 135(Pt 2): 376-90, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22036959

RESUMEN

The California bay laurel or Umbellularia californica (Hook. & Arn.) Nutt., is known as the 'headache tree' because the inhalation of its vapours can cause severe headache crises. However, the underlying mechanism of the headache precipitating properties of Umbellularia californica is unknown. The monoterpene ketone umbellulone, the major volatile constituent of the leaves of Umbellularia californica, has irritating properties, and is a reactive molecule that rapidly binds thiols. Thus, we hypothesized that umbellulone stimulates the transient receptor potential ankyrin 1 channel in a subset of peptidergic, nocioceptive neurons, activating the trigeminovascular system via this mechanism. Umbellulone, from µM to sub-mM concentrations, selectively stimulated transient receptor potential ankyrin 1-expressing HEK293 cells and rat trigeminal ganglion neurons, but not untransfected cells or neurons in the presence of the selective transient receptor potential ankyrin 1 antagonist, HC-030031. Umbellulone evoked a calcium-dependent release of calcitonin gene-related peptide from rodent trigeminal nerve terminals in the dura mater. In wild-type mice, umbellulone elicited excitation of trigeminal neurons and released calcitonin gene-related peptide from sensory nerve terminals. These two responses were absent in transient receptor potential ankyrin 1 deficient mice. Umbellulone caused nocioceptive behaviour after stimulation of trigeminal nerve terminals in wild-type, but not transient receptor potential ankyrin 1 deficient mice. Intranasal application or intravenous injection of umbellulone increased rat meningeal blood flow in a dose-dependent manner; a response selectively inhibited by systemic administration of transient receptor potential ankyrin 1 or calcitonin gene-related peptide receptor antagonists. These data indicate that umbellulone activates, through a transient receptor potential ankyrin 1-dependent mechanism, the trigeminovascular system, thereby causing nocioceptive responses and calcitonin gene-related peptide release. Pharmacokinetics of umbellulone, given by either intravenous or intranasal administration, suggest that transient receptor potential ankyrin 1 stimulation, which eventually results in meningeal vasodilatation, may be produced via two different pathways, depending on the dose. Transient receptor potential ankyrin 1 activation may either be caused directly by umbellulone, which diffuses from the nasal mucosa to perivascular nerve terminals in meningeal vessels, or by stimulation of trigeminal endings within the nasal mucosa and activation of reflex pathways. Transient receptor potential ankyrin 1 activation represents a plausible mechanism for Umbellularia californica-induced headache. Present data also strengthen the hypothesis that a series of agents, including chlorine, cigarette smoke, formaldehyde and others that are known to be headache triggers and recently identified as transient receptor potential ankyrin 1 agonists, utilize the activation of this channel on trigeminal nerves to produce head pain.


Asunto(s)
Compuestos Bicíclicos con Puentes/farmacología , Ciclohexanonas/farmacología , Extractos Vegetales/farmacología , Canales de Potencial de Receptor Transitorio/genética , Ganglio del Trigémino/efectos de los fármacos , Nervio Trigémino/efectos de los fármacos , Umbellularia , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Duramadre/irrigación sanguínea , Duramadre/efectos de los fármacos , Duramadre/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Monoterpenos , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Nervio Trigémino/metabolismo
4.
Pflugers Arch ; 462(6): 841-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21894528

RESUMEN

TRPA1 is activated by electrophilic compounds such as mustard oil (MO). Here, we demonstrate a bimodal sensitivity of TRPA1 to ligustilide (Lig), an electrophilic volatile dihydrophthalide of dietary and medicinal relevance. Lig is a potent TRPA1 activator and is also capable to induce a modest block of MO activated currents. Aromatization to dehydroligustilide (DH-Lig), as occurs during aging of its botanical sources, reversed this profile, enhancing TRPA1 inhibition and reducing activation. Mutation of the reactive cysteines in mouseTRPA1 (C622S, C642S, C666S) dramatically reduced activation by MO and significantly reduced that by Lig, but had an almost negligible effect on the action of DH-Lig, whose activation mechanism of TRPA1 is therefore largely independent from the alkylation of cysteine residues. Taken together, these observations show that the phthalide structural motif is a versatile platform to investigate the modulation of TRPA1 by small molecules, being tunable in terms of activation/inhibition profile and mechanism of interaction. Finally, the action of Lig on TRPA1 may contribute to the gustatory effects of celery, its major dietary source, and to the pharmacological action of important plants from the Chinese and native American traditional medicines.


Asunto(s)
4-Butirolactona/análogos & derivados , Canales de Potencial de Receptor Transitorio/metabolismo , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Medicina Tradicional , Ratones , Estructura Molecular , Planta de la Mostaza/metabolismo , Técnicas de Placa-Clamp , Aceites de Plantas/metabolismo , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
5.
Pflugers Arch ; 462(5): 645-53, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21870056

RESUMEN

Acupuncture has been widely used in China for three millennia as an art of healing. Yet, its physiology is not yet understood. The current interest in acupuncture started in 1971. Soon afterward, extensive research led to the concept of neural signaling with possible involvement of opioid peptides, glutamate, adenosine and identifying responsive parts in the central nervous system. In the last decade scientists began investigating the subject with anatomical and molecular imaging. It was found that mechanical movements of the needle, ignored in the past, appear to be central to the method and intracellular calcium ions may play a pivotal role. In this review, we trace the technique of clinical treatment from the first written record about 2,200 years ago to the modern time. The ancient texts have been used to introduce the concepts of yin, yang, qi, de qi, and meridians, the traditional foundation of acupuncture. We explore the sequence of the physiological process, from the turning of the needle, the mechanical wave activation of calcium ion channel to beta-endorphin secretion. By using modern terminology to re-interpret the ancient texts, we have found that the 2nd century B.C.: physiologists were meticulous investigators and their explanation fits well with the mechanistic model derived from magnetic resonance imaging (MRI) and confocal microscopy. In conclusion, the ancient model appears to have withstood the test of time surprisingly well confirming the popular axiom that the old wine is better than the new.


Asunto(s)
Acupuntura , Fenómenos Biomecánicos/fisiología , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Medicina Tradicional China/historia , Neuronas Aferentes/fisiología , Analgesia por Acupuntura/métodos , Animales , China , Diagnóstico por Imagen de Elasticidad , Historia Antigua , Humanos , Imagen por Resonancia Magnética , Meridianos , Fibras Nerviosas/fisiología , Qi , Ensayos Clínicos Controlados Aleatorios como Asunto , Yin-Yang
6.
Neuron ; 70(3): 482-94, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21555074

RESUMEN

Transient receptor potential melastatin-3 (TRPM3) is a broadly expressed Ca(2+)-permeable nonselective cation channel. Previous work has demonstrated robust activation of TRPM3 by the neuroactive steroid pregnenolone sulfate (PS), but its in vivo gating mechanisms and functions remained poorly understood. Here, we provide evidence that TRPM3 functions as a chemo- and thermosensor in the somatosensory system. TRPM3 is molecularly and functionally expressed in a large subset of small-diameter sensory neurons from dorsal root and trigeminal ganglia, and mediates the aversive and nocifensive behavioral responses to PS. Moreover, we demonstrate that TRPM3 is steeply activated by heating and underlies heat sensitivity in a subset of sensory neurons. TRPM3-deficient mice exhibited clear deficits in their avoidance responses to noxious heat and in the development of inflammatory heat hyperalgesia. These experiments reveal an unanticipated role for TRPM3 as a thermosensitive nociceptor channel implicated in the detection of noxious heat.


Asunto(s)
Calor/efectos adversos , Hiperalgesia/metabolismo , Umbral del Dolor/fisiología , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPM/metabolismo , Acrilamidas/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Glucemia/efectos de los fármacos , Glucemia/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Capsaicina/farmacología , Línea Celular Transformada , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Adyuvante de Freund/efectos adversos , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Planta de la Mostaza , Nifedipino/farmacología , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Umbral del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Aceites de Plantas/farmacología , Pregnenolona/efectos adversos , Células Receptoras Sensoriales/efectos de los fármacos , Canal Catiónico TRPA1 , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Telemetría/métodos , Factores de Tiempo , Transfección/métodos , Canales de Potencial de Receptor Transitorio/deficiencia , Canales de Potencial de Receptor Transitorio/genética , Ganglio del Trigémino/citología
7.
Curr Biol ; 21(4): 316-21, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21315593

RESUMEN

Mustard oil (MO) is a plant-derived irritant that has been extensively used in experimental models to induce pain and inflammation. The noxious effects of MO are currently ascribed to specific activation of the cation channel TRPA1 in nociceptive neurons. In contrast to this view, we show here that the capsaicin receptor TRPV1 has a surprisingly large contribution to aversive and pain responses and visceral irritation induced by MO. Furthermore, we found that this can be explained by previously unknown properties of this compound. First, MO has a bimodal effect on TRPA1, producing current inhibition at millimolar concentrations. Second, it directly and stably activates mouse and human recombinant TRPV1, as well as TRPV1 channels in mouse sensory neurons. Finally, physiological temperatures enhance MO-induced TRPV1 stimulation. Our results refute the dogma that TRPA1 is the sole nocisensor for MO and motivate a revision of the putative roles of these channels in models of MO-induced pain and inflammation. We propose that TRPV1 has a generalized role in the detection of irritant botanical defensive traits and in the coevolution of multiple mammalian and plant species.


Asunto(s)
Planta de la Mostaza/toxicidad , Aceites de Plantas/toxicidad , Canales Catiónicos TRPV/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Cistitis/inducido químicamente , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Dolor/inducido químicamente , Dolor/genética , Dolor/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/genética , Factores de Tiempo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
8.
Nat Neurosci ; 12(10): 1293-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19749751

RESUMEN

Topical application of nicotine, as used in nicotine replacement therapies, causes irritation of the mucosa and skin. This reaction has been attributed to activation of nicotinic acetylcholine receptors (nAChRs) in chemosensory neurons. In contrast with this view, we found that the chemosensory cation channel transient receptor potential A1 (TRPA1) is crucially involved in nicotine-induced irritation. We found that micromolar concentrations of nicotine activated heterologously expressed mouse and human TRPA1. Nicotine acted in a membrane-delimited manner, stabilizing the open state(s) and destabilizing the closed state(s) of the channel. In the presence of the general nAChR blocker hexamethonium, nociceptive neurons showed nicotine-induced responses that were strongly reduced in TRPA1-deficient mice. Finally, TRPA1 mediated the mouse airway constriction reflex to nasal instillation of nicotine. The identification of TRPA1 as a nicotine target suggests that existing models of nicotine-induced irritation should be revised and may facilitate the development of smoking cessation therapies with less adverse effects.


Asunto(s)
Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Resistencia de las Vías Respiratorias/efectos de los fármacos , Resistencia de las Vías Respiratorias/genética , Animales , Antipruriginosos/farmacología , Biofisica , Células CHO , Calcio , Canales de Calcio/genética , Células Cultivadas , Cricetinae , Cricetulus , Estimulación Eléctrica , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Humanos , Mecamilamina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Mentol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Planta de la Mostaza , Proteínas del Tejido Nervioso/genética , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp/métodos , Aceites de Plantas/farmacología , Pletismografía Total/métodos , Células Receptoras Sensoriales/citología , Canal Catiónico TRPA1 , Factores de Tiempo , Transfección/métodos , Canales de Potencial de Receptor Transitorio/genética , Ganglio del Trigémino/citología
9.
Proc Natl Acad Sci U S A ; 106(4): 1273-8, 2009 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19144922

RESUMEN

TRPA1 functions as an excitatory ionotropic receptor in sensory neurons. It was originally described as a noxious cold-activated channel, but its cold sensitivity has been disputed in later studies, and the contribution of TRPA1 to thermosensing is currently a matter of strong debate. Here, we provide several lines of evidence to establish that TRPA1 acts as a cold sensor in vitro and in vivo. First, we demonstrate that heterologously expressed TRPA1 is activated by cold in a Ca(2+)-independent and Ca(2+) store-independent manner; temperature-dependent gating of TRPA1 is mechanistically analogous to that of other temperature-sensitive TRP channels, and it is preserved after treatment with the TRPA1 agonist mustard oil. Second, we identify and characterize a specific subset of cold-sensitive trigeminal ganglion neurons that is absent in TRPA1-deficient mice. Finally, cold plate and tail-flick experiments reveal TRPA1-dependent, cold-induced nociceptive behavior in mice. We conclude that TRPA1 acts as a major sensor for noxious cold.


Asunto(s)
Frío , Sensación Térmica , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Activación del Canal Iónico/efectos de los fármacos , Cinética , Ratones , Ratones Endogámicos C57BL , Planta de la Mostaza , Dolor/metabolismo , Aceites de Plantas/farmacología , Canal Catiónico TRPA1 , Canales Catiónicos TRPM/metabolismo , Canales de Potencial de Receptor Transitorio/deficiencia , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
10.
Pflugers Arch ; 457(1): 77-89, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18461353

RESUMEN

The transient receptor potential channel of the ankyrin-binding repeat subfamily, TRPA1, is a Ca(2+)-permeable non-selective cation channel that depolarizes the plasma membrane and causes Ca(2+) influx. A typical feature of TRPA1 is its rapid desensitization following activation by agonists such as mustard oil (MO), cinnamaldehyde, and a high intracellular Ca(2+) concentration. In whole-cell recordings on Chinese hamster ovary (CHO) cells expressing TRPA1, desensitization was delayed when phosphatidylinositol 4,5-biphosphate (PIP(2)) was supplemented via the patch pipette, whereas the PIP(2) scavenger neomycin accelerated desensitization. Preincubation with the PI-4 kinase inhibitor wortmannin reduced both constitutive TRPA1 channels activity and the response to MO. Run down was also accelerated by high intracellular Mg(2+) concentrations, whereas chelating intracellular Mg(2+) with 10 mM ethylenedinitrilotetraacetic acid (EDTA) increased the basal channel activity. In inside-out patches, we observed a rapid run down of TRPA1 activity, which could be prevented by application of diC8-PIP(2) or 2 mM Mg-ATP but not Na(2)-ATP to the cytosolic side of the excised patches. In isolated trigeminal ganglion neurons, preincubation with wortmannin resulted in inhibition of endogenous TRPA1 activation by MO. Taken together, our data indicate that PIP(2) modulates TRPA1, albeit to a lesser extent than other known PIP(2)-dependent TRP channels, and that tools modifying the plasma membrane PIP(2) content often have direct effects on this channel.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Proteínas del Tejido Nervioso/efectos de los fármacos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Animales , Arsenicales/farmacología , Células CHO , Cricetinae , Cricetulus , Interpretación Estadística de Datos , Electrofisiología , Estrenos/farmacología , Planta de la Mostaza , NADPH Oxidasas/antagonistas & inhibidores , Neomicina/farmacología , Proteínas del Tejido Nervioso/agonistas , Neuronas/fisiología , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/antagonistas & inhibidores , Aceites de Plantas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Pirrolidinonas/farmacología , Soluciones , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/agonistas
11.
Curr Neuropharmacol ; 6(1): 79-96, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19305789

RESUMEN

Although the benefits are sometimes obvious, traditional or herbal medicine is regarded with skepticism, because the mechanism through which plant compounds exert their powers are largely elusive. Recent studies have shown however that many of these plant compounds interact with specific ion channels and thereby modulate the sensing mechanism of the human body. Especially members of the Transient Receptor Potential (TRP) channels have drawn large attention lately as the receptors for plant-derived compounds such as capsaicin and menthol. TRP channels constitute a large and diverse family of channel proteins that can serve as versatile sensors that allow individual cells and entire organisms to detect changes in their environment. For this family, a striking number of empirical views have turned into mechanism-based actions of natural compounds. In this review we will give an overview of herbal compounds and toxins, which modulate TRP channels.

12.
Bull Mem Acad R Med Belg ; 162(3-4): 244-53, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18075054

RESUMEN

The discovery of the Transient Receptor Potential (TRP) superfamily of versatile and polymodal cation channels has dramatically extended our molecular understanding of cellular sensors. The main surprising properties are their diversity in ion selectivity and the polymodal mechanisms of activation, which necessarily result in equally diverse cell functions. They are involved in sensory functions, e.g. the perception of temperature, smell, taste, pain, mechanical signals and respond to many natural compounds used in "traditional medicine". TRP channels are main players in Ca2+ signalling, which controls a plethora of events ranging from neurotransmitter release to gene transcription and cell death. They are also involved in homeostatic functions, e.g. epithelial Ca2+ and Mg2+ reabsorption and lysosomal pH regulation. TRP channel dysfunction contributes to certain human diseases. Finally, TRP channels will become important novel pharmacological targets for the treatment of human diseases and for modulation of sensory functions, e.g. the perception of flavor.


Asunto(s)
Canales de Calcio/fisiología , Canales Catiónicos TRPM/fisiología , Humanos , Activación del Canal Iónico , Filogenia , Canales Catiónicos TRPM/clasificación
13.
J Biol Chem ; 279(25): 26351-7, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15100231

RESUMEN

The epithelial Ca(2+) channel transient receptor potential cation channel V5 (TRPV5) constitutes the apical Ca(2+) entry pathway in the process of active Ca(2+) reabsorption. Ca(2+) influx through TRPV5 is tightly controlled by modulators of Ca(2+) homeostasis, including 1,25-dihydroxyvitamin D(3) and dietary Ca(2+). However, little is known about intracellular proteins that interact with TRPV5 and directly regulate the activation of this channel. By the use of cDNA microarrays, the present study identified 80K-H as the first protein involved in the Ca(2+)-dependent control of the epithelial Ca(2+) channel TRPV5. 80K-H was initially identified as a protein kinase C substrate, but its biological function remains to be established. We demonstrated a specific interaction between 80K-H and TRPV5, co-localization of both proteins in the kidney, and similar transcriptional regulation by 1,25-dihydroxyvitamin D(3) and dietary Ca(2+). Furthermore, 80K-H directly bound Ca(2+), and inactivation of its two EF-hand structures totally abolished Ca(2+) binding. Electrophysiological studies using 80K-H mutants showed that three domains of 80K-H (the two EF-hand structures, the highly acidic glutamic stretch, and the His-Asp-Glu-Leu sequence) are critical determinants for TRPV5 activity. Importantly, inactivation of the EF-hand pair reduced the TRPV5-mediated Ca(2+) current and increased the TRPV5 sensitivity to intracellular Ca(2+), accelerating the feedback inhibition of the channel. None of the 80K-H mutants altered the TRPV5 plasma membrane localization nor the association of 80K-H with TRPV5, suggesting that 80K-H has a direct effect on TRPV5 activity. In conclusion, we report a novel function for 80K-H as a Ca(2+) sensor controlling TRPV5 channel activity.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Fosfoproteínas/fisiología , Absorción , Animales , Biotinilación , Calcitriol/metabolismo , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Electrofisiología , Glucosidasas , Glutatión Transferasa/metabolismo , Inmunohistoquímica , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/metabolismo , Pruebas de Precipitina , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales Catiónicos TRPV , Distribución Tisular , Xenopus
14.
J Biol Chem ; 278(33): 30813-20, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12799367

RESUMEN

TRPM4 is a Ca2+-activated but Ca2+-impermeable cation channel. An increase of [Ca2+]i induces activation and subsequent reduction of currents through TRPM4 channels. This inactivation is strikingly decreased in cell-free patches. In whole cell and cell-free configuration, currents through TRPM4 deactivate rapidly at negative potentials. At positive potentials, currents are much larger and activate slowly. This voltage-dependent behavior induces a striking outward rectification of the steady state currents. The instantaneous current-voltage relationship, derived from the amplitude of tail currents following a prepulse to positive potentials, is linear. Currents show a Boltzmann type of activation; the fraction of open channels increases at positive potentials and is low at negative potentials. Voltage dependence is not due to block by divalent cations or to voltage-dependent binding of intracellular Ca2+ to an activator site, indicating that TRPM4 is a transient receptor potential channel with an intrinsic voltage-sensing mechanism. Voltage dependence of TRPM4 may be functionally important, especially in excitable tissues generating plateau-like or bursting action potentials.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión , Activación del Canal Iónico/fisiología , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , ADN Complementario , Humanos , Riñón/citología , Ratones , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Canales Catiónicos TRPM , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA