Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071102

RESUMEN

Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 µM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Desoxiadenosinas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Dengue/tratamiento farmacológico , Virus del Dengue/metabolismo , Desoxiadenosinas/metabolismo , Simulación del Acoplamiento Molecular , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Células Vero/virología , Proteínas no Estructurales Virales/metabolismo
2.
Toxicol Mech Methods ; 28(1): 1-11, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28678657

RESUMEN

Inhibition of P-glycoprotein (P-gp)'s function may conduct significant changes in the prescription drugs' pharmacokinetic profiles and escalate potential risks in taking place of drug/herb-drug interactions. Computational modeling was advanced to scrutinize some bioflavonoids which play roles in herb-drug interactions as P-gp inhibitors utilizing molecular docking and pharmacophore analyses. Twenty-five flavonoids were utilized as ligands for the modeling. The mouse P-gp (code: 4Q9H) was acquired from the PDB. The docking was operated utilizing AutoDock version 4.2.6 (Scripps Research Institute, La Jolla, CA) against the NBD2 of 4Q9H. The result illustrated the high correlation between the docking scores and observed activities of the flavonoids and the putative binding site of these flavonoids was proposed and compared with the site for ATP. To evaluate hotspot amino acid residues within the NBD2, Binding modes for the ligands were achieved using LigandScout to originate the NBD2-flavonoid pharmacophore models. The results asserted that these inhibitors competed with ATP for binding site in the NBD2 (as competitive inhibitors) including the hotspot residues which associated with electrostatic and van der Waals interactions with the flavonoids. In MD simulation of eight delegated complexes selected from the analyzed flavonoid subclasses, RMSD analysis of the trajectories indicated the residues were stable throughout the duration of simulations.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Flavonoides/uso terapéutico , Interacciones de Hierba-Droga , Extractos Vegetales/uso terapéutico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Flavonoides/química , Flavonoides/metabolismo , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
3.
Toxicol Mech Methods ; 27(4): 253-271, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27996361

RESUMEN

In this work, molecular docking, pharmacophore modeling and molecular dynamics (MD) simulation were rendered for the mouse P-glycoprotein (P-gp) (code: 4Q9H) and bioflavonoids; amorphigenin, chrysin, epigallocatechin, formononetin and rotenone including a positive control; verapamil to identify protein-ligand interaction features including binding affinities, interaction characteristics, hot-spot amino acid residues and complex stabilities. These flavonoids occupied the same binding site with high binding affinities and shared the same key residues for their binding interactions and the binding region of the flavonoids was revealed that overlapped the ATP binding region with hydrophobic and hydrophilic interactions suggesting a competitive inhibition mechanism of the compounds. Root mean square deviations (RMSDs) analysis of MD trajectories of the protein-ligand complexes and NBD2 residues, and ligands pointed out these residues were stable throughout the duration of MD simulations. Thus, the applied preliminary structure-based molecular modeling approach of interactions between NBD2 and flavonoids may be gainful to realize the intimate inhibition mechanism of P-gp at NBD2 level and on the basis of the obtained data, it can be concluded that these bioflavonoids have the potential to cause herb-drug interactions or be used as lead molecules for the inhibition of P-gp (as anti-multidrug resistance agents) via the NBD2 blocking mechanism in future.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Biología Computacional/métodos , Flavonoides/toxicidad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Sitios de Unión , Flavonoides/química , Interacciones de Hierba-Droga , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA