Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 14766, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283083

RESUMEN

Monodispersed Fe3O4 magnetic nanoparticles (MNPs) having size of 7 nm have been prepared from iron oleate and made water dispersible by functionalization for biomedical applications. Three different reactions employing thioglycolic acid, aspartic acid and aminophosphonate were performed on oleic acid coated Fe3O4. In order to achieve a control on particle size, the pristine nanoparticles were heated in presence of ferric oleate which led to increase in size from 7 to 11 nm. Reaction parameters such as rate of heating, reaction temperature and duration of heating have been studied. Shape of particles was found to change from spherical to cuboid. The cuboid shape in turn enhances magneto-crystalline anisotropy (Ku). Heating efficacy of these nanoparticles for hyperthermia was also evaluated for different shapes and sizes. We demonstrate heat generation from these MNPs for hyperthermia application under alternating current (AC) magnetic field and optimized heating efficiency by controlling morphology of particles. We have also studied intra-cellular uptake and localization of nanoparticles and cytotoxicity under AC magnetic field in human breast carcinoma cell line.


Asunto(s)
Neoplasias de la Mama/terapia , Compuestos Férricos/uso terapéutico , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/uso terapéutico , Anisotropía , Neoplasias de la Mama/patología , Femenino , Compuestos Férricos/química , Humanos , Hierro/química , Células MCF-7 , Campos Magnéticos , Nanopartículas de Magnetita/química , Temperatura , Agua/química
2.
Dalton Trans ; 44(33): 14686-96, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26215789

RESUMEN

Magnetic luminescent hybrid nanostructures (MLHN) have received a great deal of attention due to their potential biomedical applications such as thermal therapy, magnetic resonance imaging, drug delivery and intracellular imaging. We report the development of bifunctional Fe3O4 decorated YPO4:Eu hybrid nanostructures by covalent bridging of carboxyl PEGylated Fe3O4 and amine functionalized YPO4:Eu particles. The surface functionalization of individual nanoparticulates as well as their successful conjugation was evident from Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta-potential and transmission electron microscopy (TEM) studies. X-ray diffraction (XRD) analysis reveals the formation of highly crystalline hybrid nanostructures. TEM micrographs clearly show the binding/anchoring of 10 nm Fe3O4 nanoparticles onto the surface of 100-150 nm rice grain shaped YPO4:Eu nanostructures. These MLHN show good colloidal stability, magnetic field responsivity and self-heating capacity under an external AC magnetic field. The induction heating studies confirmed localized heating of MLHN under an AC magnetic field with a high specific absorption rate. Photoluminescence spectroscopy and fluorescence microscopy results show optical imaging capability of MLHN. Furthermore, successful internalization of these MLHN in the cells and their cellular imaging ability are confirmed from confocal microscopy imaging. Specifically, the hybrid nanostructure provides an excellent platform to integrate luminescent and magnetic materials into one single entity that can be used as a potential tool for hyperthermia treatment of cancer and cellular imaging.


Asunto(s)
Europio/química , Óxido Ferrosoférrico/química , Sustancias Luminiscentes/química , Nanoestructuras/química , Fosfatos/química , Itrio/química , Línea Celular Tumoral , Europio/uso terapéutico , Óxido Ferrosoférrico/uso terapéutico , Humanos , Hipertermia Inducida , Sustancias Luminiscentes/uso terapéutico , Campos Magnéticos , Magnetismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Nanoestructuras/uso terapéutico , Nanoestructuras/ultraestructura , Neoplasias/diagnóstico , Neoplasias/terapia , Imagen Óptica , Itrio/uso terapéutico
3.
Colloids Surf B Biointerfaces ; 111: 264-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23838191

RESUMEN

Surface of La(0.7)Sr(0.3)MnO3 (LSMO) magnetic nanoparticles (MNPs) is functionalized with polymer (dextran) and their colloidal stability in various mediums is carried out. The influence of the surface functionalization of LSMO MNPs on their colloidal stability in physiological media is studied and correlated with their hyperthermia properties. Many studies have concerned the colloidal stability of MNPs coated with polymer, but their long-term stability when such complexes are exposed to physiological media is still not well understood. After zeta potential study, it is found that the dextran coating on MNPs improves the colloidal stability in water as well as in physiological media like PBS. The specific absorption rates (SAR) of these MNPs are found to be in 50-85 W/g in different concentrations of glucose and NaCl; and there values are suitable for hyperthermia treatment of cancer cells under AC magnetic field. After incorporation of MNPs up to 0.2-1mg/mL in 2 × 10(5)cells/mL (L929), the apoptosis and necrosis studies are carried out by acridine orange and ethidium bromide (AO and EB) staining and followed by visualization of microstructures under a fluorescence microscope. It is found that there are no morphological changes (i.e. no signs of cell rounding, bubble formation on the membrane and nuclear fragmentation) suggesting biocompatibility of dextran coated LSMO nanoparticles up to these concentrations.


Asunto(s)
Coloides/química , Medios de Cultivo/química , Hipertermia Inducida/métodos , Lantano/química , Compuestos de Manganeso/química , Manganeso/química , Nanopartículas/química , Óxidos/química , Polímeros/química , Estroncio/química , Naranja de Acridina , Animales , Dextranos/química , Etidio , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Campos Magnéticos , Ratones , Microscopía Fluorescente , Coloración y Etiquetado , Electricidad Estática
4.
Dalton Trans ; 42(14): 4885-96, 2013 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-23370409

RESUMEN

Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.


Asunto(s)
Europio/química , Óxido Ferrosoférrico/química , Nanopartículas de Magnetita/química , Itrio/química , Animales , Línea Celular , Hipertermia Inducida , Nanopartículas de Magnetita/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Teoría Cuántica
5.
Dalton Trans ; 42(4): 1249-58, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23138108

RESUMEN

MgFe(2)O(4) nanoparticles with sizes around 20 nm have been prepared by a combustion method and functionalized with dextran for their possible applications in magnetic particle hyperthermia. The induction heating study of these nanoparticles at different magnetic field amplitudes, from 6.7 kA m(-1) to 26.7 kA m(-1), showed self-heating temperature rise up to 50.25 °C and 73.32 °C (at 5 mg mL(-1) and 10 mg mL(-1) concentrations in water respectively) which was primarily thought to be due to hysteresis losses activated by an AC magnetic field. The dextran coated nanoparticles showed a maximum specific absorption rate (SAR) of about 85.57 W g(-1) at 26.7 kA m(-1) (265 kHz). Dextran coated nanoparticles at concentrations below 1.8 mg mL(-1) exhibit good viability above 86% on mice fibroblast L929 cells. The results suggest that combustion synthesized MgFe(2)O(4) nanoparticles coated with dextran can be used as potential heating agents in magnetic particle hyperthermia. Uncoated and dextran coated samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TG-DTA) and zeta potential-DLS studies.


Asunto(s)
Dextranos/química , Compuestos Férricos/química , Hipertermia Inducida , Compuestos de Magnesio/química , Magnetismo , Nanopartículas del Metal/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Campos Magnéticos , Nanopartículas del Metal/toxicidad , Ratones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA