Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 38(2): 856-879, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084816

RESUMEN

Burns can cause inflammation and delayed healing, necessitating alternative therapies due to the limitations of conventional treatments. Propolis, a natural bee-produced substance, has shown promise in facilitating burn healing. This literature review provides a comprehensive overview of propolis' mechanisms of action, wound-healing properties, and its application in treating skin burns. Propolis contains bioactive compounds with antimicrobial, antioxidant, and anti-inflammatory properties, making it a promising candidate for managing skin burn injuries. It helps prevent infections, neutralize harmful free radicals, and promote a well-balanced inflammatory response. Moreover, propolis aids in wound closure, tissue regeneration, collagen synthesis, cellular proliferation, and angiogenesis, contributing to tissue regeneration and remodeling. The article discusses various propolis extracts, extraction methods, chemical composition, and optimized formulations like ointments and creams for burn wound treatment. Considerations regarding dosage and safety are addressed. Further research is needed to fully understand propolis' mechanisms, determine optimal formulations, and establish suitable clinical dosages. Nevertheless, propolis' natural origin and demonstrated benefits make it a compelling avenue for burn care exploration, potentially complementing existing therapies and improving burn management outcomes.


Asunto(s)
Antiinfecciosos , Quemaduras , Própolis , Humanos , Própolis/farmacología , Própolis/uso terapéutico , Cicatrización de Heridas , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Quemaduras/tratamiento farmacológico
2.
Pak J Biol Sci ; 26(10): 543-548, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38110560

RESUMEN

<b>Background and Objective:</b> The emergence of methicillin-resistant community-acquired <i>Staphylococcus aureus </i>and antibiotic-resistant <i>Neisseria gonorrhoeae</i> has raised significant concerns. Efforts to combat resistance involve the exploration of novel alternative therapies, particularly those derived from insect components. <i>Rhynchophorus</i> sp., a coconut pest commonly found in Southeast Asia, has haemolymph that exhibits bactericidal properties<i>.</i> The objective of this study was to assess the potential of the haemolymph of <i>Rhynchophorus</i> sp., larvae as an antimicrobial agent against Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and <i>Neisseria gonorrhoeae</i>. <b>Materials and Methods:</b> In this study, <i>Rhynchophorus</i> sp., larvae were gathered for the purpose of haemolymph extraction. These larvae were then divided into distinct groups, with one group subjected to immunization using <i>Escherichia coli</i>, while another group was left unimmunized. The study utilized the well diffusion method to evaluate antibacterial effectiveness. <b>Results:</b> Haemolymph fluid extracts from <i>Escherichia</i> coli-immunized <i>Rhynchophorus</i> sp., larvae, exhibited strong antibacterial activity, with an average value of 19.3±0.47 mm, against MRSA, more enhanced compared to unimmunized larvae. In contrast, haemolymph fluid extracts from <i>Escherichia coli</i>-immunized <i>Rhynchophorus</i> sp., larvae demonstrated a more moderate antibacterial activity, with a mean of 14.17±0.27 mm, against <i>Neisseria gonorrhoeae</i>, a level similar to unimmunized larvae. <b>Conclusion:</b> The haemolymph extracted from <i>Rhynchophorus </i>sp., beetles larvae exhibited antimicrobial effects against MRSA and <i>Neisseria gonorrhoeae</i>, particularly when it is enhanced through <i>Escherichia coli</i> immunization.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Gorgojos , Animales , Neisseria gonorrhoeae , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Larva , Escherichia coli
3.
Molecules ; 27(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35011492

RESUMEN

Before entering the cell, the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. Hence, this RBD is a critical target for the development of antiviral agents. Recent studies have discovered that SARS-CoV-2 variants with mutations in the RBD have spread globally. The purpose of this in silico study was to determine the potential of a fruit bromelain-derived peptide. DYGAVNEVK. to inhibit the entry of various SARS-CoV-2 variants into human cells by targeting the hACE binding site within the RBD. Molecular docking analysis revealed that DYGAVNEVK interacts with several critical RBD binding residues responsible for the adhesion of the RBD to hACE2. Moreover, 100 ns MD simulations revealed stable interactions between DYGAVNEVK and RBD variants derived from the trajectory of root-mean-square deviation (RMSD), radius of gyration (Rg), and root-mean-square fluctuation (RMSF) analysis, as well as free binding energy calculations. Overall, our computational results indicate that DYGAVNEVK warrants further investigation as a candidate for preventing SARS-CoV-2 due to its interaction with the RBD of SARS-CoV-2 variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Bromelaínas , Simulación por Computador , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/química , Antivirales/química , Antivirales/farmacología , Bromelaínas/química , Bromelaínas/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/farmacología , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Tratamiento Farmacológico de COVID-19
4.
Artículo en Inglés | MEDLINE | ID: mdl-34899956

RESUMEN

Green tea is produced from Camellia sinensis (L.) buds and leaves that have not gone through the oxidation and withering processes used to produce black and oolong teas. It was originated in China, but its cultivation and production have expanded to other Eastern Asian countries. Several polyphenolic compounds, including flavandiols, flavonols, flavonoids, and phenolic acids, are found in green tea and may constitute greater than 30% of the dry weight. Flavonols, especially catechins, represent the majority of green tea polyphenols. Green tea polyphenolic compounds have been reported to confer several health benefits. This review describes the potential use of green tea polyphenols in the management of coronavirus disease 2019 (COVID-19). The immunomodulatory, antibacterial, antioxidant, and anti-inflammatory effects of green tea polyphenols have also been considered in this review. In addition to describing the bioactivities associated with green tea polyphenols, this review discusses the potential delivery of these biomolecules using a nanoparticle drug delivery system. Moreover, the bioavailability and toxicity of green tea polyphenols are also evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA