Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Insect Sci ; 29(3): 645-656, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34399028

RESUMEN

Carotenoids are involved in many essential physiological functions and are produced from geranylgeranyl pyrophosphate through synthase, desaturase, and cyclase activities. In the pea aphid (Acyrthosiphon pisum), the duplication of carotenoid biosynthetic genes, including carotenoid synthases/cyclases (ApCscA-C) and desaturases (ApCdeA-D), through horizontal gene transfer from fungi has been detected, and ApCdeB has known dehydrogenation functions. However, whether other genes contribute to aphid carotenoid biosynthesis, and its specific regulatory pathway, remains unclear. In the current study, functional analyses of seven genes were performed using heterologous complementation and RNA interference assays. The bifunctional enzymes ApCscA-C were responsible for the synthase of phytoene, and ApCscC may also have a cyclase activity. ApCdeA, ApCdeC, and ApCdeD had diverse dehydrogenation functions. ApCdeA catalyzed the enzymatic conversion of phytoene to neurosporene (three-step product), ApCdeC catalyzed the enzymatic conversion of phytoene to ζ-carotene (two-step product), and ApCdeD catalyzed the enzymatic conversion of phytoene to lycopene (four-step product). Silencing of ApCscs reduced the expression levels of ApCdes, and silencing these carotenoid biosynthetic genes reduced the α-, ß-, and γ-carotene levels, as well as the total carotenoid level. The results suggest that these genes were activated and led to carotenoid biosynthesis in the pea aphid.


Asunto(s)
Áfidos , Vías Biosintéticas , Animales , Áfidos/genética , Vías Biosintéticas/genética , Carotenoides , Pisum sativum , Interferencia de ARN
2.
Exp Appl Acarol ; 72(3): 229-244, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28656486

RESUMEN

The citrus red mite, Panonychus citri, is one of the most economically and globally destructive mite pests of citrus. Acaricide resistance has been a growing problem in controlling this pest. As the main inhibitory neurotransmitter in organisms, γ-aminobutyric acid (GABA) is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). In the present study, one novel GAD gene, PcGAD, was identified and characterized from P. citri. The opening reading frame of PcGAD contained 1548 nucleotides that encode 515 amino acids. The subsequent spatiotemporal expression pattern by RT-qPCR revealed that the expression levels of PcGAD were significantly higher in larvae than in adults. Challenging with various concentrations of abamectin resulted in the upregulation of PcGAD transcript levels. Furthermore, biochemical characterization indicated that changes in GAD activity coincided with its mRNA levels. High-performance liquid chromatography confirmed that the GABA contents of P. citri increased upon abamectin treatment. The application of abamectin induces PcGAD expression and activates GAD activity, thereby resulting in an increase in GABA content in P. citri, which contributes to the adaptability of the mite to abamectin challenge.


Asunto(s)
Glutamato Descarboxilasa/metabolismo , Ivermectina/análogos & derivados , Tetranychidae , Ácido gamma-Aminobutírico/metabolismo , Animales , Glutamato Descarboxilasa/efectos de los fármacos , Ivermectina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA