Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 38(1): 2220558, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37357755

RESUMEN

Heat shock protein 90 (Hsp90) is considered an attractive therapeutic target for cancer treatment due to its high expression in many cancers. In this study, four potent Hsp90 inhibitors (HPs 1-4) were identified using structure-based virtual screening. Among them, HP-4 exhibited the most potent inhibitory effects (IC50 = 17.64 ± 1.45 nM) against the Hsp90 protein, which was about 7.7 times stronger than that of MPC-3100 (a positive inhibitor targeting Hsp90). In vitro cytotoxicity assay suggested that HP-4 could effectively inhibit the proliferation of a series of tumour cells, including HCT-116, HeLa, A549, A2780, DU145, HepG2 and A498. Furthermore, in vivo assay displayed that HP-4 had significant anti-tumour effects on HCT-116 cell-derived xenograft models. These data demonstrate that HP-4 could be a potential lead compound for the further investigation of anti-tumour drugs.


Asunto(s)
Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Farmacóforo , Humanos , Animales , Ratones
2.
Molecules ; 24(17)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480625

RESUMEN

Tubulin inhibitors have been considered as potential drugs for cancer therapy. However, their drug resistance and serious side-effects are the main reasons for clinical treatment failure. Therefore, there is still an urgent need to develop effective therapeutic drugs. Herein, a structure-based pharmacophore model was developed based on the co-crystallized structures of the tubulin with a high resolution. The model including one hydrogen-bond acceptor feature, two aromatic features, and one hydrophobic feature was further validated using the Gunner-Henry score method. Virtual screening was performed by an integrated protocol that combines drug-likeness analysis, pharmacophore mapping, and molecular docking approaches. Finally, five hits were selected for biological evaluation. The results indicated that all these hits at the concentration of 40 µM showed an inhibition of more than 50% against five human tumor cells (MCF-7, U87MG, HCT-116, MDA-MB-231, and HepG2). Particularly, hit 1 effectively inhibited the proliferation of these tumor cells, with inhibition rates of more than 80%. The results of tubulin polymerization and colchicine-site competition assays suggested that hit 1 significantly inhibited tubulin polymerization by binding to the colchicine site. Thus, hit 1 could be used as a potential chemotherapeutic agent for cancer treatment. This work also demonstrated the potential of our screening protocol to identify biologically active compounds.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Relación Estructura-Actividad Cuantitativa , Moduladores de Tubulina/farmacología , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina/metabolismo , Humanos , Ligandos , Modelos Moleculares , Polimerizacion , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA