Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 79, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287242

RESUMEN

BACKGROUND: Guizhou Plateau, as one of the original centers of tea plant, has a profound multi-ethnic cultural heritage and abundant tea germplasm resources. However, the impact of indigenous community factors on the genetic diversity, population structure and geographical distribution of tea plant is still unclear. RESULTS: Using the genotyping-by-sequencing (GBS) approach, we collected 415 tea plant accessions from the study sites, estimated genetic diversity, developed a core collection, and conducted a genome-wide association study (GWAS) based on 99,363 high-quality single-nucleotide polymorphisms (SNPs). A total of 415 tea accessions were clustered into six populations (GP01, GP02, GP03, GP04, GP05 and GP06), and the results showed that GP04 and GP05 had the highest and lowest genetic diversity (Pi = 0.214 and Pi = 0.145, respectively). Moreover, 136 tea accessions (33%) were selected to construct the core set that can represent the genetic diversity of the whole collection. By analyzing seven significant SNP markers associated with the traits such as the germination period of one bud and two leaves (OTL) and the germination period of one bud and three leaves (OtL), four candidate genes possibly related to OTL and OtL were identified. CONCLUSIONS: This study revealed the impact of indigenous communities on the population structure of 415 tea accessions, indicating the importance of cultural practices for protection and utilization of tea plant genetic resources. Four potential candidate genes associated with the OTL and OtL of tea plant were also identified, which will facilitate genetic research, germplasm conservation, and breeding.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fenotipo , , Polimorfismo de Nucleótido Simple
2.
J Econ Entomol ; 117(1): 302-310, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38011902

RESUMEN

Toxoptera aurantii is one of the most destructive pests, threatening the yield and quality of tea plantations. The salicylic acid (SA)-mediated signaling pathway is vital for the induction of plant defense responses; however, its role in tea plant resistance to T. aurantii remains unclear. Thus, this study used and electrical penetration graph and monitoring of population dynamics to evaluate the effects of exogenous SA application on T. aurantii feeding behavior and population growth in tea seedlings. Moreover, the effects of SA treatment on the activities of defense-related enzymes were analyzed. Probe counts and the duration of xylem sap ingestion were significantly higher in SA-treated plants than those in the control group. The total duration of passive phloem ingestion was significantly decreased in 0.5 mmol/l SA-treated plants, and the application of 0.5, 1, and 4 mmol/l SA significantly inhibited T. aurantii population growth. In addition, the activities of polyphenol oxidase, peroxidase, and superoxide dismutase were significantly increased in the 0.5 mmol/l SA-treated plants. Overall, this study demonstrates the capacity of exogenous SA to activate defense responses against T. aurantii. These results have crucial implications for understanding the mechanisms of enhanced resistance, thereby providing a sustainable approach for managing T. aurantii.


Asunto(s)
Áfidos , Animales , Áfidos/fisiología , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo ,
3.
BMC Plant Biol ; 23(1): 255, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37189087

RESUMEN

BACKGROUND: Tea, the second largest consumer beverage in the world after water, is widely cultivated in tropical and subtropical areas. However, the effect of environmental factors on the distribution of wild tea plants is unclear. RESULTS: A total of 159 wild tea plants were collected from different altitudes and geological types of the Guizhou Plateau. Using the genotyping-by-sequencing method, 98,241 high-quality single nucleotide polymorphisms were identified. Genetic diversity, population structure analysis, principal component analysis, phylogenetic analysis, and linkage disequilibrium were performed. The genetic diversity of the wild tea plant population from the Silicate Rock Classes of Camellia gymnogyna was higher than that from the Carbonate Rock Classes of Camellia tachangensis. In addition, the genetic diversity of wild tea plants from the second altitude gradient was significantly higher than that of wild tea plants from the third and first altitude gradients. Two inferred pure groups (GP01 and GP02) and one inferred admixture group (GP03) were identified by population structure analysis and were verified by principal component and phylogenetic analyses. The highest differentiation coefficients were determined for GP01 vs. GP02, while the lowest differentiation coefficients were determined for GP01 vs. GP03. CONCLUSIONS: This study revealed the genetic diversity and geographical distribution characteristics of wild tea plants in the Guizhou Plateau. There are significant differences in genetic diversity and evolutionary direction between Camellia tachangensis with Carbonate Rock Classes at the first altitude gradient and Camellia gymnogyna with Silicate Rock Classes at the third altitude gradient. Geological environment, soil mineral element content, soil pH, and altitude markedly contributed to the genetic differentiation between Camellia tachangensis and Camellia gymnogyna.


Asunto(s)
Camellia sinensis , Camellia , Filogenia , Camellia sinensis/genética , Camellia sinensis/química , Camellia/genética , , Variación Genética
4.
BMC Plant Biol ; 23(1): 196, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046207

RESUMEN

BACKGROUND: Studying the genetic characteristics of tea plant (Camellia spp.) leaf traits is essential for improving yield and quality through breeding and selection. Guizhou Plateau, an important part of the original center of tea plants, has rich genetic resources. However, few studies have explored the associations between tea plant leaf traits and single nucleotide polymorphism (SNP) markers in Guizhou. RESULTS: In this study, we used the genotyping-by-sequencing (GBS) method to identify 100,829 SNP markers from 338 accessions of tea germplasm in Guizhou Plateau, a region with rich genetic resources. We assessed population structure based on high-quality SNPs, constructed phylogenetic relationships, and performed genome-wide association studies (GWASs). Four inferred pure groups (G-I, G-II, G-III, and G-IV) and one inferred admixture group (G-V), were identified by a population structure analysis, and verified by principal component analyses and phylogenetic analyses. Through GWAS, we identified six candidate genes associated with four leaf traits, including mature leaf size, texture, color and shape. Specifically, two candidate genes, located on chromosomes 1 and 9, were significantly associated with mature leaf size, while two genes, located on chromosomes 8 and 11, were significantly associated with mature leaf texture. Additionally, two candidate genes, located on chromosomes 1 and 2 were identified as being associated with mature leaf color and mature leaf shape, respectively. We verified the expression level of two candidate genes was verified using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and designed a derived cleaved amplified polymorphism (dCAPS) marker that co-segregated with mature leaf size, which could be used for marker-assisted selection (MAS) breeding in Camellia sinensis. CONCLUSIONS: In the present study, by using GWAS approaches with the 338 tea accessions population in Guizhou, we revealed a list of SNPs markers and candidate genes that were significantly associated with four leaf traits. This work provides theoretical and practical basis for the genetic breeding of related traits in tea plant leaves.


Asunto(s)
Camellia sinensis , Estudio de Asociación del Genoma Completo , Mapeo Cromosómico/métodos , Camellia sinensis/genética , Genotipo , Filogenia , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Hojas de la Planta/genética ,
5.
BMC Plant Biol ; 22(1): 55, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086484

RESUMEN

BACKGROUND: Tea plants originated in southwestern China. Guizhou Plateau is an original center of tea plants, and is rich in germplasm resources. However, the genetic diversity, population structure and distribution characteristics of cultivated-type tea plants in the region are unknown. In this study, we explored the genetic diversity and geographical distribution of cultivated-type tea accessions in Guizhou Plateau. RESULTS: We used 112,072 high-quality genotyping-by-sequencing to analyze the genetic diversity, principal components, phylogeny, population structure, and linkage disequilibrium, and develop a core collection of 253 cultivated-type tea plant accessions from Guizhou Plateau. The results showed Genetic diversity of the cultivated-type tea accessions of the Pearl River Basin was significantly higher than that of the cultivated-type tea accessions of the Yangtze River Basin. Three inferred pure groups (CG-1, CG-2 and CG-3) and one inferred admixture group (CG-4), were identified by a population structure analysis, and verified by principal component and phylogenetic analyses. The highest genetic distance and differentiation coefficients were determined for CG-2 vs CG-3. The lower genetic distance and differentiation coefficients were determined for CG-4 vs CG-2 and CG-4 vs CG-3, respectively. We developed a core set and a primary set. The primary and core sets contained 77.0 and 33.6% of all individuals in the initial set, respectively. The primary set may serve as the primary population in genome-wide association studies, while the core collection may serve as the core population in multiple treatment setting studies. CONCLUSIONS: The present study demonstrated the genetic diversity and geographical distribution characteristics of cultivated-type tea plants in Guizhou Plateau. Significant differences in genetic diversity and evolutionary direction were detected between the ancient landraces of the Pearl River Basin and the those of the Yangtze River Basin. Major rivers and ancient hubs were largely responsible for the genetic exchange between the Pearl River Basin and the Yangtze River Basin ancient landraces as well as the formation of the ancient hubs evolutionary group. Genetic diversity, population structure and core collection elucidated by this study will facilitate further genetic studies, germplasm protection, and breeding of tea plants.


Asunto(s)
Camellia sinensis/genética , Camellia sinensis/fisiología , Variación Genética , Agricultura , China , Demografía , Regulación de la Expresión Génica de las Plantas , Genotipo , Humanos
6.
BMC Plant Biol ; 19(1): 328, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337341

RESUMEN

BACKGROUND: To efficiently protect and exploit germplasm resources for marker development and breeding purposes, we must accurately depict the features of the tea populations. This study focuses on the Camellia sinensis (C. sinensis) population and aims to (i) identify single nucleotide polymorphisms (SNPs) on the genome level, (ii) investigate the genetic diversity and population structure, and (iii) characterize the linkage disequilibrium (LD) pattern to facilitate next genome-wide association mapping and marker-assisted selection. RESULTS: We collected 415 tea accessions from the Origin Center and analyzed the genetic diversity, population structure and LD pattern using the genotyping-by-sequencing (GBS) approach. A total of 79,016 high-quality SNPs were identified; the polymorphism information content (PIC) and genetic diversity (GD) based on these SNPs showed a higher level of genetic diversity in cultivated type than in wild type. The 415 accessions were clustered into three groups by STRUCTURE software and confirmed using principal component analyses (PCA)-wild type, cultivated type, and admixed wild type. However, unweighted pair group method with arithmetic mean (UPGMA) trees indicated the accessions should be grouped into more clusters. Further analyses identified four groups, the Pure Wild Type, Admixed Wild Type, ancient landraces and modern landraces using STRUCTURE, and the results were confirmed by PCA and UPGMA tree method. A higher level of genetic diversity was detected in ancient landraces and Admixed Wild Type than that in the Pure Wild Type and modern landraces. The highest differentiation was between the Pure Wild Type and modern landraces. A relatively fast LD decay with a short range (kb) was observed, and the LD decays of four inferred populations were different. CONCLUSIONS: This study is, to our knowledge, the first population genetic analysis of tea germplasm from the Origin Center, Guizhou Plateau, using GBS. The LD pattern, population structure and genetic differentiation of the tea population revealed by our study will benefit further genetic studies, germplasm protection, and breeding.


Asunto(s)
Camellia sinensis/genética , China , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Dinámica Poblacional
7.
Sci Rep ; 9(1): 2709, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804390

RESUMEN

Flavonoids, theanine and caffeine are the main secondary metabolites of the tea plant (Camellia sinensis), which account for the tea's unique flavor quality and health benefits. The biosynthesis pathways of these metabolites have been extensively studied at the transcriptional level, but the regulatory mechanisms are still unclear. In this study, to explore the transcriptome diversity and complexity of tea plant, PacBio Iso-Seq and RNA-seq analysis were combined to obtain full-length transcripts and to profile the changes in gene expression during the leaf development. A total of 1,388,066 reads of insert (ROI) were generated with an average length of 1,762 bp, and more than 54% (755,716) of the ROIs were full-length non-chimeric (FLNC) reads. The Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness was 92.7%. A total of 93,883 non-redundant transcripts were obtained, and 87,395 (93.1%) were new alternatively spliced isoforms. Meanwhile, 7,650 differential expression transcripts (DETs) were identified. A total of 28,980 alternative splicing (AS) events were predicted, including 1,297 differential AS (DAS) events. The transcript isoforms of the key genes involved in the flavonoid, theanine and caffeine biosynthesis pathways were characterized. Additionally, 5,777 fusion transcripts and 9,052 long non-coding RNAs (lncRNAs) were also predicted. Our results revealed that AS potentially plays a crucial role in the regulation of the secondary metabolism of the tea plant. These findings enhanced our understanding of the complexity of the secondary metabolic regulation of tea plants and provided a basis for the subsequent exploration of the regulatory mechanisms of flavonoid, theanine and caffeine biosynthesis in tea plants.


Asunto(s)
Camellia sinensis/metabolismo , Proteínas de Plantas/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metabolismo Secundario/genética , Metabolismo Secundario/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA