Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108383

RESUMEN

Irritable bowel syndrome (IBS), a multifactorial intestinal disorder, is often associated with a disruption in intestinal permeability as well as an increased expression of pro-inflammatory markers. The aim of this study was to first test the impact of treatment with glutamine (Gln), a food supplement containing natural curcumin extracts and polyunsaturated n-3 fatty acids (Cur); bioactive peptides from a fish protein hydrolysate (Ga); and a probiotic mixture containing Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus helveticus. These compounds were tested alone on a stress-based IBS model, the chronic-restraint stress model (CRS). The combination of Gln, Cur and Ga (GCG) was also tested. Eight-week-old C57Bl/6 male mice were exposed to restraint stress for two hours every day for four days and received different compounds every day one week before and during the CRS procedure. Plasma corticosterone levels were measured as a marker of stress, and colonic permeability was evaluated ex vivo in Ussing chambers. Changes in the gene expression of tight junction proteins (occludin, claudin-1 and ZO 1) and inflammatory cytokines (IL1ß, TNFα, CXCL1 and IL10) were assessed using RT-qPCR. The CRS model led to an increase in plasma corticosterone and an increase in colonic permeability compared with unstressed animals. No change in plasma corticosterone concentrations was observed in response to CRS with the different treatments (Gln, Cur, Ga or GCG). Stressed animals treated with Gln, Cur and Ga alone and in combination showed a decrease in colonic permeability when compared to the CRS group, while the probiotic mixture resulted in an opposite response. The Ga treatment induced an increase in the expression of the anti-inflammatory cytokine IL-10, and the GCG treatment was able to decrease the expression of CXCL1, suggesting the synergistic effect of the combined mixture. In conclusion, this study demonstrated that a combined administration of glutamine, a food supplement containing curcumin and polyunsaturated n-3 fatty acids, and bioactive peptides from a fish hydrolysate was able to reduce colonic hyperpermeability and reduce the inflammatory marker CXCL1 in a stress-based model of IBS and could be of interest to patients suffering from IBS.


Asunto(s)
Curcumina , Ácidos Grasos Omega-3 , Síndrome del Colon Irritable , Animales , Ratones , Masculino , Síndrome del Colon Irritable/metabolismo , Glutamina/farmacología , Glutamina/metabolismo , Curcumina/farmacología , Curcumina/metabolismo , Mucosa Intestinal/metabolismo , Corticosterona/metabolismo , Citocinas/metabolismo , Permeabilidad , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo
2.
Nutrients ; 14(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35745154

RESUMEN

Anxiety is a high frequency disorder in the general population. It is usually treated with benzodiazepines, which cause side effects and a dependence that could make withdrawal difficult. Alternative treatments are therefore needed to reduce the use of anxiolytics, particularly for adjustment disorder with anxiety. An observational, multicentre, prospective, longitudinal study has been conducted by general practitioners and one gynaecologist to evaluate the efficacy of a dietary supplement on adjustment disorder with anxiety (Stress 2 study). Patients diagnosed as anxious with a score of ≥20 on the Hamilton Anxiety Rating Scale (Ham-A, first visit on Day 0 (V0)) were offered a 28-day treatment with a dietary supplement formulated with bioactive peptides from a fish protein hydrolysate (Gabolysat®), magnesium and vitamin B6. At the second visit (V1), the Ham-A Rating Scale, the Patient Global Impression scale (PGI) and the Clinical Global Impressions scale (CGI) were administered. A 50% reduction in the Ham-A score, was achieved for 41.9% of the patients. The mean Ham-A score decreased by 12.1 ± 5.7 points (p < 0.001) between V0 (25.6 ± 3.8) and V1 (13.6 ± 6.0). Furthermore, according to the CGI scale, the anxiety of 75.3% of patients improved significantly and very significantly, with limited side effects and a negligible rebound effect. In conclusion, adjustment disorder with anxiety seems to be effectively managed by an alternative and safer solution than benzodiazepines.


Asunto(s)
Trastornos de Adaptación , Medicina General , Trastornos de Adaptación/tratamiento farmacológico , Ansiedad/tratamiento farmacológico , Benzodiazepinas , Suplementos Dietéticos , Humanos , Estudios Longitudinales , Magnesio/uso terapéutico , Péptidos/uso terapéutico , Estudios Prospectivos , Escalas de Valoración Psiquiátrica , Resultado del Tratamiento
3.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916312

RESUMEN

Cartilage is a non-innervated and non-vascularized tissue. It is composed of one main cell type, the chondrocyte, which governs homeostasis within the cartilage tissue, but has low metabolic activity. Articular cartilage undergoes substantial stresses that lead to chondral defects, and inevitably osteoarthritis (OA) due to the low intrinsic repair capacity of cartilage. OA remains an incurable degenerative disease. In this context, several dietary supplements have shown promising results, notably in the relief of OA symptoms. In this study, we investigated the effects of collagen hydrolysates derived from fish skin (Promerim®30 and Promerim®60) and fish cartilage (Promerim®40) on the phenotype and metabolism of human articular chondrocytes (HACs). First, we demonstrated the safety of Promerim® hydrolysates on HACs cultured in monolayers. Then we showed that, Promerim® hydrolysates can increase the HAC viability and proliferation, while decreasing HAC SA-ß-galactosidase activity. To evaluate the effect of Promerim® on a more relevant model of culture, HAC were cultured as organoids in the presence of Promerim® hydrolysates with or without IL-1ß to mimic an OA environment. In such conditions, Promerim® hydrolysates led to a decrease in the transcript levels of some proteases that play a major role in the development of OA, such as Htra1 and metalloproteinase-1. Promerim® hydrolysates downregulated HtrA1 protein expression. In contrast, the treatment of cartilage organoids with Promerim® hydrolysates increased the neosynthesis of type I collagen (Promerim®30, 40 and 60) and type II collagen isoforms (Promerim®30 and 40), the latter being the major characteristic component of the cartilage extracellular matrix. Altogether, our results demonstrate that the use of Promerim® hydrolysates hold promise as complementary dietary supplements in combination with the current classical treatments or as a preventive therapy to delay the occurrence of OA in humans.


Asunto(s)
Condrocitos/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Cartílago Articular/citología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Condrocitos/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Cultivo Primario de Células
4.
Nutrients ; 13(2)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33670026

RESUMEN

A woman's nutritional status during pregnancy and breastfeeding is not only critical for her health, but also for that of future generations. Nutritional requirements during pregnancy differ considerably from those of non-pregnant women. Thus, a personalized approach to nutritional advice is recommended. Currently, some countries recommend routine supplementation for all pregnant women, while others recommend supplements only when necessary. Maternal physiological adaptations, as well as nutritional requirements during pregnancy and lactation, will be reviewed in the literature examining the impacts of dietary changes. All of these data have been studied deeply to facilitate a discussion on dietary supplement use and the recommended doses of nutrients during pregnancy and lactation. The aim of this review is to evaluate the knowledge in the scientific literature on the current recommendations for the intake of the most common micronutrients and omega-3 fatty acids during pregnancy and lactation in the United States, Canada, and Europe. Taking into account these considerations, we examine minerals, vitamins, and omega-3 fatty acid requirements. Finally, we conclude by discussing the potential benefits of each form of supplementation.


Asunto(s)
Adaptación Fisiológica/fisiología , Suplementos Dietéticos , Lactancia/fisiología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Necesidades Nutricionales/fisiología , Canadá , Dieta Saludable/normas , Europa (Continente) , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Humanos , Micronutrientes/administración & dosificación , Minerales/administración & dosificación , Estado Nutricional , Embarazo , Atención Prenatal/normas , Estados Unidos , Vitaminas/administración & dosificación
5.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430111

RESUMEN

Articular cartilage experiences mechanical constraints leading to chondral defects that inevitably evolve into osteoarthritis (OA), because cartilage has poor intrinsic repair capacity. Although OA is an incurable degenerative disease, several dietary supplements may help improve OA outcomes. In this study, we investigated the effects of Dielen® hydrolyzed fish collagens from skin (Promerim®30 and Promerim®60) and cartilage (Promerim®40) to analyze the phenotype and metabolism of equine articular chondrocytes (eACs) cultured as organoids. Here, our findings demonstrated the absence of cytotoxicity and the beneficial effect of Promerim® hydrolysates on eAC metabolic activity under physioxia; further, Promerim®30 also delayed eAC senescence. To assess the effect of Promerim® in a cartilage-like tissue, eACs were cultured as organoids under hypoxia with or without BMP-2 and/or IL-1ß. In some instances, alone or in the presence of IL-1ß, Promerim®30 and Promerim®40 increased protein synthesis of collagen types I and II, while decreasing transcript levels of proteases involved in OA pathogenesis, namely Htra1, and the metalloproteinases Mmp1-3, Adamts5, and Cox2. Both Promerim® hydrolysates also decreased Htra1 protein amounts, particularly in inflammatory conditions. The effect of Promerim® was enhanced under inflammatory conditions, possibly due to a decrease in the synthesis of inflammation-associated molecules. Finally, Promerim® favored in vitro repair in a scratch wound assay through an increase in cell proliferation or migration. Altogether, these data show that Promerim®30 and 40 hold promise as dietary supplements to relieve OA symptoms in patients and to delay OA progression.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Colágeno/biosíntesis , Organoides/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Animales , Cartílago Articular/crecimiento & desarrollo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/efectos de los fármacos , Caballos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/patología , Organoides/crecimiento & desarrollo , Piel/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA