Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Neurosci ; 56(4): 789-798, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25691152

RESUMEN

Neuropeptide W (NPW), which was originally isolated from the porcine hypothalamus, has been identified as the endogenous ligand for both the NPBWR1 (GPR7) and NPBWR2 (GPR8) receptors. These receptors, which belong to the orphan G protein-coupled receptor (GPCR) family, share a high sequence homology with the opioid and somatostatin receptor families. NPW and NPBWR1 are widely distributed in the rat central nervous system (CNS). While the intracerebroventricular (i.c.v.) injection of NPW elevates plasma corticosterone levels, the intravenous administration of NPW in conjunction with a corticotropin-releasing hormone (CRH) antagonist blocks NPW-induced corticosterone secretion. It has been reported that NPW is involved in regulating the hypothalamus-pituitary-adrenal cortex (HPA) axis and that i.c.v. administration of NPW decreases feeding behavior. The aim of the present study was to ascertain if NPW's role in feeding regulation is mediated (or not) through corticotropin-releasing hormone (CRH)-containing neurons. We found that NPW-containing axon terminals make synapses with CRH-immunoreactive cell bodies and dendritic processes in the hypothalamic paraventricular nucleus (PVN). The central infusion of NPW significantly induced c-Fos expression in CRH-immunoreactive neurons in the mouse PVN, but not in vasopressin- or oxytocin-immunoreactive neurons. To determine if NPW regulates feeding behavior through CRH neurons, the feeding behavior of mice was studied following the i.c.v. administration NPW in the presence or absence of pretreatment with a CRH antagonist. While NPW administration decreased feeding activity, the CRH antagonist inhibited this effect. These results strongly suggest that NPW regulates feeding behavior through CRH neurons in the mouse brain.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Conducta Alimentaria , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuropéptidos/farmacología , Animales , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Sinapsis/metabolismo
2.
Peptides ; 36(2): 168-75, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22687366

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent neurotrophic and neuroprotectant that is transported across the blood-brain barrier in amounts sufficient to affect brain function. However, its short half-life in blood makes it difficult to administer peripherally. Here, we determined whether the radioactively labeled 38 amino acid form of PACAP can enter the brain after intranasal (i.n.) administration. Occipital cortex and striatum were the regions with the highest uptake, peaking at levels of about 2-4% of the injected dose per gram of brain region. Inclusion of unlabeled PACAP greatly increased retention of I-PACAP by brain probably because of inhibition of the brain-to-blood efflux transporter for PACAP located at the blood-brain barrier. Sufficient amounts of PACAP could be delivered to the brain to affect function as shown by improvement of memory in aged SAMP8 mice, a model of Alzheimer's disease. We found that each of three cyclodextrins when included in the i.n. injection produced a unique distribution pattern of I-PACAP among brain regions. As examples, ß-cyclodextrin greatly increased uptake by the occipital cortex and hypothalamus, α-cyclodextrin increased uptake by the olfactory bulb and decreased uptake by the occipital cortex and striatum, and (2-hydropropyl)-ß-cyclodextrin increased uptake by the thalamus and decreased uptake by the striatum. These results show that therapeutic amounts of PACAP can be delivered to the brain by intranasal administration and that cyclodextrins may be useful in the therapeutic targeting of peptides to specific brain regions.


Asunto(s)
Encéfalo/metabolismo , Ciclodextrinas/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/administración & dosificación , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacocinética , Administración Intranasal , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , alfa-Ciclodextrinas/farmacología , beta-Ciclodextrinas/farmacología
3.
Neuropeptides ; 44(2): 99-106, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19948359

RESUMEN

Neuropeptide W (NPW), which was recently isolated from the porcine hypothalamus, has been identified as the endogenous ligand of the orphan G protein-coupled receptors GPR7 (NPBWR1) and GPR8 (NPBWR2). Infusion of NPW increases food intake in the light phase, whereas in the dark phase, it has the opposite effect. In this study, we used RT-PCR analysis to examine the gene expression of NPW mRNA in the rat brain, and performed a detailed analysis of the distribution of NPW-positive neurons by use of immunohistochemistry at both the light and electron microscopic levels. NPW mRNA expression was demonstrated in the hypothalamic paraventricular nucleus (PVN), arcuate nucleus (ARC), ventromedial nucleus (VMH) and lateral hypothalamus (LH). At the light microscopic level, NPW-like immunoreactive (NPW-LI) cell bodies were found in the preoptic area (POA), PVN, ARC, VMH, LH, PMD (dorsal premammillary nucleus), periaqueductal gray (PAG), lateral parabrachial nucleus (LPB), and prepositus nucleus (Pr). NPW-LI axon terminals were shown in the POA, bed nucleus of the stria terminalis (BST), amygdala, PVN, ARC, VMH, LH, and PAG, LPB. In addition, at the electron microscopic level, NPW-LI cell bodies and dendritic processes were often seen to receive inputs from other unknown neurons in the ARC, PVN, VMH and amygdala. Our observations indicate that NPW-LI neurons widely distributed in the rat brain region. These finding suggest that NPW may have important roles in feeding behavior, energy homeostasis, emotional response and regulation of saliva secretion.


Asunto(s)
Hipotálamo/metabolismo , Fibras Nerviosas/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Tronco Encefálico/metabolismo , Expresión Génica , Inmunohistoquímica , Masculino , Microscopía Electrónica , Red Nerviosa/metabolismo , Neuropéptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Regul Pept ; 145(1-3): 122-7, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17931715

RESUMEN

Synaptic relationships between ghrelin-like immunoreactive axon terminals and other neurons in the hypothalamic arcuate nucleus (ARC) were studied using immunostaining methods at the light and electron microscope levels. Many ghrelin-like immunoreactive axon terminals were found to be in apposition to ghrelin-like immunoreactive neurons at the light microscopic level. At the electron microscopic level, ghrelin-like immunoreactive axon terminals were found to make synapses on ghrelin-like immunoreactive cell bodies and dendrites in the ARC. While the axo-dendritic synapses between ghrelin- and ghrelin-like immunoreactive neurons were mostly the asymmetric type, the axo-somatic synapses were both asymmetric and symmetric type of synapses. Ghrelin at 10(-10) M increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in the neurons isolated from the ARC, some of which were immunocytochemically identified as ghrelin-positive. Ghrelin at 10(-10) M also increased [Ca(2+)](i) in 12% of ghrelin-like immunoreactive neurons in the ARC. These findings suggest that ghrelin serves as a transmitter and/or modulator that stimulates [Ca(2+)](i) signaling in ghrelin neurons of the ARC, which may participate in the orexigenic action of ghrelin. Our data suggests a possibility of existing a novel circuit implicating regulation of feeding and/or energy metabolism.


Asunto(s)
Ghrelina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Forma de la Célula , Hipotálamo/ultraestructura , Masculino , Microscopía Inmunoelectrónica , Neuronas/ultraestructura , Ratas , Ratas Wistar , Sinapsis/ultraestructura
5.
Regul Pept ; 145(1-3): 159-64, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17884195

RESUMEN

Neuropeptide W (NPW) was recently discovered as the endogenous ligand for GPR7 and GPR8, which are orphan G protein-coupled receptors isolated from the porcine brain. These receptors are assumed to be involved in feeding regulation and/or energy homeostasis. Recent anatomical studies have revealed that high levels of GPR7 mRNA are distributed in the brain, including the hypothalamus and amygdala. However immunohistochemical studies on the distribution and localization of NPW have revealed differing results concerning whether or not NPW-containing cell bodies and their processes are present in the hypothalamus. Only a few immunohistochemical reports have been published concerning the presence of NPW-containing neurons in the brains of rodents, while there have been no anatomical studies of the co-localization of this neuropeptide with other transmitters. On this basis, we used a specific antiserum against NPW to determine immunohistochemically the presence of NPW-containing neurons in the rat hypothalamus. Many NPW-like immunoreactive cell bodies and their processes could be detected in the caudal region of the lateral hypothalamus but not in its anterior or middle regions. Given this positive identification of NPW-containing neurons in the lateral hypothalamus, we further studied the nature of interaction between NPW-containing neurons and neurons containing feeding regulating peptides such as orexin- and melanin-concentrating hormone (MCH). Very close interactions between NPW-containing nerve processes and orexin- and MCH-containing neuronal cell bodies and processes could be observed. These morphological findings strongly suggest that NPW is involved in the regulation of feeding and/or sleep/arousal behavior through orexin- and/or MCH-mediated neuronal pathways.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Hormonas Hipofisarias/metabolismo , Animales , Masculino , Orexinas , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA