Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 58: 101441, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35031523

RESUMEN

OBJECTIVE: Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS: To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS: We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION: Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.


Asunto(s)
Caquexia , Neoplasias Pancreáticas , Animales , Caquexia/metabolismo , Células Endoteliales/metabolismo , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Ratones , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Análisis de Secuencia de ARN , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Glia ; 68(7): 1479-1494, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32039522

RESUMEN

Microglia in the mediobasal hypothalamus (MBH) respond to inflammatory stimuli and metabolic perturbations to mediate body composition. This concept is well studied in the context of high fat diet induced obesity (HFDO), yet has not been investigated in the context of cachexia, a devastating metabolic syndrome characterized by anorexia, fatigue, and muscle catabolism. We show that microglia accumulate specifically in the MBH early in pancreatic ductal adenocarcinoma (PDAC)-associated cachexia and assume an activated morphology. Furthermore, we observe astrogliosis in the MBH and hippocampus concurrent with cachexia initiation. We next show that circulating immune cells resembling macrophages infiltrate the MBH. PDAC-derived factors induced microglia to express a transcriptional profile in vitro that was distinct from that induced by lipopolysaccharide (LPS). Microglia depletion through CSF1-R antagonism resulted in accelerated cachexia onset and increased anorexia, fatigue, and muscle catabolism during PDAC. This corresponded with increased hypothalamic-pituitary-adrenal (HPA) axis activation. CSF1-R antagonism had little effect on inflammatory response in the circulation, liver, or tumor. These findings demonstrate that microglia are protective against PDAC cachexia and provide mechanistic insight into this function.


Asunto(s)
Caquexia/metabolismo , Hipotálamo/metabolismo , Microglía/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Caquexia/inmunología , Metabolismo Energético/fisiología , Gliosis/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Obesidad/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
3.
Brain Behav Immun ; 73: 364-374, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29852290

RESUMEN

Hypothalamic inflammation is a key component of acute sickness behavior and cachexia, yet mechanisms of inflammatory signaling in the central nervous system remain unclear. Previous work from our lab and others showed that while MyD88 is an important inflammatory signaling pathway for sickness behavior, MyD88 knockout (MyD88KO) mice still experience sickness behavior after inflammatory stimuli challenge. We found that after systemic lipopolysaccharide (LPS) challenge, MyD88KO mice showed elevated expression of several cytokine and chemokine genes in the hypothalamus. We therefore assessed the role of an additional inflammatory signaling pathway, TRIF, in acute inflammation (LPS challenge) and in a chronic inflammatory state (cancer cachexia). TRIFKO mice resisted anorexia and weight loss after peripheral (intraperitoneal, IP) or central (intracerebroventricular, ICV) LPS challenge and in a model of pancreatic cancer cachexia. Compared to WT mice, TRIFKO mice showed attenuated upregulation of Il6, Ccl2, Ccl5, Cxcl1, Cxcl2, and Cxcl10 in the hypothalamus after IP LPS treatment, as well as attenuated microglial activation and neutrophil infiltration into the brain after ICV LPS treatment. Lastly, we found that TRIF was required for Ccl2 upregulation in the hypothalamus and induction of the catabolic genes, Mafbx, Murf1, and Foxo1 in gastrocnemius during pancreatic cancer. In summary, our results show that TRIF is an important inflammatory signaling mediator of sickness behavior and cachexia and presents a novel therapeutic target for these conditions.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Caquexia/fisiopatología , Conducta de Enfermedad/efectos de los fármacos , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Femenino , Hipotálamo/metabolismo , Conducta de Enfermedad/fisiología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA