Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; 32(2): e2523, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921463

RESUMEN

Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace-of-life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops. Campylobacter spp. were the most prevalent enteric pathogen (8.0%), while Salmonella and Shiga-toxin producing Escherichia coli (STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically, Campylobacter and STEC-associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively. Campylobacter was also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy-foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest-eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win-win-win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait-based framework suggests a path forward for co-managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under-studied species.


Asunto(s)
Animales Salvajes , Escherichia coli Shiga-Toxigénica , Animales , Aves , Bovinos , Granjas , Salmonella , Estados Unidos
2.
Microb Ecol ; 76(2): 482-491, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29380027

RESUMEN

Parasites often modify host foraging behavior, for example, by spurring changes to nutrient intake ratios or triggering self-medication. The gut parasite, Nosema ceranae, increases energy needs of the European or Western honey bee (Apis mellifera), but little is known about how infection affects foraging behavior. We used a combination of experiments and observations of caged and free-flying individual bees and hives to determine how N. ceranae affects honey bee foraging behavior. In an experiment with caged bees, we found that infected bees with access to a high-quality pollen were more likely to survive than infected bees with access to a lower quality pollen or no pollen. Non-infected bees showed no difference in survival with pollen quality. We then tested free-flying bees in an arena of artificial flowers and found that pollen foraging bees chose pollen commensurate with their infection status; twice as many infected bees selected the higher quality pollen than the lower quality pollen, while healthy bees showed no preference between pollen types. However, healthy and infected bees visited sucrose and pollen flowers in the same proportions. Among hive-level observations, we found no significant correlations between N. ceranae infection intensity in the hive and the proportion of bees returning with pollen. Our results indicate that N. ceranae-infected bees benefit from increased pollen quality and will selectively forage for higher quality while foraging for pollen, but infection status does not lead to increased pollen foraging at either the individual or hive levels.


Asunto(s)
Abejas/microbiología , Conducta Animal/fisiología , Nosema/fisiología , Polen , Alimentación Animal , Animales , Interacciones Microbiota-Huesped/fisiología , Nosema/patogenicidad , Tasa de Supervivencia
3.
Nature ; 466(7302): 109-12, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596021

RESUMEN

Human activity can degrade ecosystem function by reducing species number (richness) and by skewing the relative abundance of species (evenness). Conservation efforts often focus on restoring or maintaining species number, reflecting the well-known impacts of richness on many ecological processes. In contrast, the ecological effects of disrupted evenness have received far less attention, and developing strategies for restoring evenness remains a conceptual challenge. In farmlands, agricultural pest-management practices often lead to altered food web structure and communities dominated by a few common species, which together contribute to pest outbreaks. Here we show that organic farming methods mitigate this ecological damage by promoting evenness among natural enemies. In field enclosures, very even communities of predator and pathogen biological control agents, typical of organic farms, exerted the strongest pest control and yielded the largest plants. In contrast, pest densities were high and plant biomass was low when enemy evenness was disrupted, as is typical under conventional management. Our results were independent of the numerically dominant predator or pathogen species, and so resulted from evenness itself. Moreover, evenness effects among natural enemy groups were independent and complementary. Our results strengthen the argument that rejuvenation of ecosystem function requires restoration of species evenness, rather than just richness. Organic farming potentially offers a means of returning functional evenness to ecosystems.


Asunto(s)
Agricultura/métodos , Biodiversidad , Insectos/fisiología , Control Biológico de Vectores/métodos , Solanum tuberosum/crecimiento & desarrollo , Animales , Biomasa , Escarabajos/patogenicidad , Escarabajos/fisiología , Ecología/métodos , Cadena Alimentaria , Insectos/patogenicidad , Conducta Predatoria/fisiología , Solanum tuberosum/microbiología , Washingtón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA