Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Theor Biol ; 419: 254-265, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28216428

RESUMEN

Cationic antimicrobial peptides (CAMPs) are essential components of innate immunity. Here we show that antimicrobial potency of CAMPs is linearly correlated to the product CmHnL where C is the net charge of the peptide, H is a measure of its hydrophobicity and L its length. Exponents m and n define the relative contribution of charge and hydrophobicity to the antimicrobial potency. Very interestingly the values of m and n are strain specific. The ratio n/(m+n) can vary between ca. 0.5 and 1, thus indicating that some strains are sensitive to highly charged peptides, whereas others are particularly susceptible to more hydrophobic peptides. The slope of the regression line describing the correlation "antimicrobial potency"/"CmHnL product" changes from strain to strain indicating that some strains acquired a higher resistance to CAMPs than others. Our analysis provides also an effective computational strategy to identify CAMPs included inside the structure of larger proteins or precursors, which can be defined as "cryptic" CAMPs. We demonstrate that it is not only possible to identify and locate with very good precision the position of cryptic peptides, but also to analyze the internal structure of long CAMPs, thus allowing to draw an accurate map of the molecular determinants of their antimicrobial activity. A spreadsheet, provided in the Supplementary material, allows performing the analysis of protein sequences. Our strategy is also well suited to analyze large pools of sequences, thus significantly improving the identification of new CAMPs and the study of innate immunity.


Asunto(s)
Aminoácidos/química , Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/química , Interacciones Hidrofóbicas e Hidrofílicas , Algoritmos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Relación Estructura-Actividad Cuantitativa , Especificidad de la Especie , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo
2.
Biochem Pharmacol ; 130: 34-50, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131846

RESUMEN

Host defence peptides (HDPs) are short, cationic amphipathic peptides that play a key role in the response to infection and inflammation in all complex life forms. It is increasingly emerging that HDPs generally have a modest direct activity against a broad range of microorganisms, and that their anti-infective properties are mainly due to their ability to modulate the immune response. Here, we report the recombinant production and characterization of two novel HDPs identified in human Apolipoprotein B (residues 887-922) by using a bioinformatics method recently developed by our group. We focused our attention on two variants of the identified HDP, here named r(P)ApoBL and r(P)ApoBS, 38- and 26-residue long, respectively. Both HDPs were found to be endowed with a broad-spectrum antimicrobial activity while they show neither toxic nor haemolytic effects towards eukaryotic cells. Interestingly, both HDPs were found to display a significant anti-biofilm activity, and to act in synergy with either commonly used antibiotics or EDTA. The latter was selected for its ability to affect bacterial outer membrane permeability, and to sensitize bacteria to several antibiotics. Circular dichroism analyses showed that SDS, TFE, and LPS significantly alter r(P)ApoBL conformation, whereas slighter or no significant effects were detected in the case of r(P)ApoBS peptide. Interestingly, both ApoB derived peptides were found to elicit anti-inflammatory effects, being able to mitigate the production of pro-inflammatory interleukin-6 and nitric oxide in LPS induced murine macrophages. It should also be emphasized that r(P)ApoBL peptide was found to play a role in human keratinocytes wound closure in vitro. Altogether, these findings open interesting perspectives on the therapeutic use of the herein identified HDPs.


Asunto(s)
Apolipoproteínas B/química , Fragmentos de Péptidos/uso terapéutico , Células 3T3 , Animales , Apolipoproteínas B/uso terapéutico , Dicroismo Circular , Células HeLa , Humanos , Ratones , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapéutico , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA