Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 23(3): 253-66, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26969379

RESUMEN

BACKGROUND: The search for new anticancer compounds is a crucial element of natural products research. PURPOSE: In this study the effects of naturally occurring homochelidonine in comparison to chelidonine on cell cycle progression and cell death in leukemic T-cells with different p53 status are described. METHODS: The mechanism of cytotoxic, antiproliferative, apoptosis-inducing effects and the effect on expressions of cell cycle regulatory proteins was investigated using XTT assay, Trypan blue exclusion assay, flow cytometry, Western blot analysis, xCELLigence, epi-fluorescence and 3D super resolution microscopy. A549 cells were used for xCELLigence, clonogenic assay and for monitoring microtubule stability. RESULTS: We found that homochelidonine and chelidonine displayed significant cytotoxicity in examined blood cancer cells with the exception of HEL 92.1.7 and U-937 exposed to homochelidonine. Unexpectedly, homochelidonine and chelidonine-induced cytotoxicity was more pronounced in Jurkat cells contrary to MOLT-4 cells. Homochelidonine showed an antiproliferative effect on A549 cells but it was less effective compared to chelidonine. Biphasic dose-depended G1 and G2/M cell cycle arrest along with the population of sub-G1 was found after treatment with homochelidonine in MOLT-4 cells. In variance thereto, an increase in G2/M cells was detected after treatment with homochelidonine in Jurkat cells. Treatment with chelidonine induced cell cycle arrest in the G2/M cell cycle in both MOLT-4 and Jurkat cells. MOLT-4 and Jurkat cells treated with homochelidonine and chelidonine showed features of apoptosis such as phosphatidylserine exposure, a loss of mitochondrial membrane potential and an increase in the caspases -3/7, -8 and -9. Western blots indicate that homochelidonine and chelidonine exposure activates Chk1 and Chk2. Studies conducted with fluorescence microscopy demonstrated that chelidonine and homochelidonine inhibit tubulin polymerization in A549 cells. CONCLUSION: Collectively, the data indicate that chelidonine and homochelidonine are potent inducers of cell death in cancer cell lines, highlighting their potential relevance in leukemic cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzofenantridinas/farmacología , Alcaloides de Berberina/farmacología , Chelidonium/química , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Células Jurkat , Potencial de la Membrana Mitocondrial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA