Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotoxicology ; 13(5): 623-643, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30727799

RESUMEN

Engineered nanomaterials (ENMs) are intentionally designed in different nano-forms of the same parent material in order to meet application requirements. Different grouping and read-across concepts are proposed to streamline risk assessments by pooling nano-forms in one category. Environmental grouping concepts still are in their infancy and mainly focus on grouping by hazard categories. Complete risk assessments require data on environmental release and exposure not only for ENMs but also for their nano-forms. The key requirement is to identify and to distinguish the production volumes of the ENMs regarding nano-form-specific applications. The aim of our work was to evaluate whether such a grouping is possible with the available data and which influence it has on the environmental risk assessment of ENMs. A functionality-driven approach was applied to match the material-specific property (i.e. crystal form/morphology) with the functions employed in the applications. We demonstrate that for nano-TiO2, carbon nanotubes (CNTs), and nano-Al2O3 the total production volume can be allocated to specific nano-forms based on their functionalities. The differentiated assessments result in a variation of the predicted environmental concentrations for anatase vs. rutile nano-TiO2, single-wall vs. multi-wall CNTs and α- vs. γ-nano-Al2O3 by a factor of 2 to 13. Additionally, the nano-form-specific predicted no-effect concentrations for these ENMs were derived. The risk quotients for all nano-forms indicated no immediate risk in freshwaters. Our results suggest that grouping and read-across concepts should include both a nano-form release potential for estimating the environmental exposure and separately consider the nano-forms in environmental risk assessments.


Asunto(s)
Óxido de Aluminio/toxicidad , Contaminantes Ambientales/toxicidad , Nanoestructuras/toxicidad , Nanotubos de Carbono/toxicidad , Titanio/toxicidad , Óxido de Aluminio/química , Óxido de Aluminio/clasificación , Ecotoxicología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/química , Contaminantes Ambientales/clasificación , Agua Dulce/química , Nanoestructuras/química , Nanoestructuras/clasificación , Nanotubos de Carbono/química , Nanotubos de Carbono/clasificación , Medición de Riesgo , Titanio/química , Titanio/clasificación
2.
Environ Toxicol Chem ; 37(5): 1387-1395, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29315795

RESUMEN

Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al2 O3 , nano-SiO2 , nano iron oxides, nano-CeO2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO2 < nano iron oxides < nano-Al2 O3 < nano-SiO2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al2 O3 > nano-SiO2 > nano iron oxides > nano-CeO2 > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC.


Asunto(s)
Óxido de Aluminio/química , Cerio/química , Ambiente , Compuestos Férricos/química , Nanoestructuras/química , Puntos Cuánticos/química , Medición de Riesgo , Dióxido de Silicio/química , Modelos Estadísticos
3.
Environ Pollut ; 235: 589-601, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29331892

RESUMEN

Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO2, nano-iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models.


Asunto(s)
Óxido de Aluminio/análisis , Cerio/análisis , Compuestos Férricos/análisis , Modelos Químicos , Nanoestructuras/análisis , Puntos Cuánticos/análisis , Dióxido de Silicio/análisis , Exposición a Riesgos Ambientales/análisis , Europa (Continente) , Medición de Riesgo , Suelo , Administración de Residuos
4.
Environ Int ; 77: 132-47, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25705000

RESUMEN

In the context of assessing potential risks of engineered nanoparticles (ENPs), life cycle thinking can represent a holistic view on the impacts of ENPs through the entire value chain of nano-enhanced products from production, through use, and finally to disposal. Exposure to ENPs in consumer or environmental settings may either be to the original, pristine ENPs, or more likely, to ENPs that have been incorporated into products, released, aged and transformed. Here, key product-use related aging and transformation processes affecting ENPs are reviewed. The focus is on processes resulting in ENP release and on the transformation(s) the released particles undergo in the use and disposal phases of its product life cycle for several nanomaterials (Ag, ZnO, TiO2, carbon nanotubes, CeO2, SiO2 etc.). These include photochemical transformations, oxidation and reduction, dissolution, precipitation, adsorption and desorption, combustion, abrasion and biotransformation, among other biogeochemical processes. To date, few studies have tried to establish what changes the ENPs undergo when they are incorporated into, and released from, products. As a result there is major uncertainty as to the state of many ENPs following their release because much of current testing on pristine ENPs may not be fully relevant for risk assessment purposes. The goal of this present review is therefore to use knowledge on the life cycle of nano-products to derive possible transformations common ENPs in nano-products may undergo based on how these products will be used by the consumer and eventually discarded. By determining specific gaps in knowledge of the ENP transformation process, this approach should prove useful in narrowing the number of physical experiments that need to be conducted and illuminate where more focused effort can be placed.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Nanoestructuras/análisis , Material Particulado , Contaminantes Ambientales/química , Humanos , Nanoestructuras/química , Medición de Riesgo
5.
Environ Int ; 37(6): 1131-42, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21397331

RESUMEN

Engineered nanomaterials (ENM) are expected to hold considerable potential for products that offer improved or novel functionalities. For example, nanotechnologies could open the way for the use of textile products outside their traditional fields of applications, for example, in the construction, medical, automobile, environmental and safety technology sectors. Consequently, nanotextiles could become ubiquitous in industrial and consumer products in future. Another ubiquitous field of application for ENM is façade coatings. The environment and human health could be affected by unintended release of ENM from these products. The product life cycle and the product design determine the various environmental and health exposure situations. For example, ENM unintentionally released from geotextiles will probably end up in soils, whereas ENM unintentionally released from T-shirts may come into direct contact with humans and end up in wastewater. In this paper we have assessed the state of the art of ENM effects on the environment and human health on the basis of selected environmental and nanotoxicological studies and on our own environmental exposure modeling studies. Here, we focused on ENM that are already applied or may be applied in future to textile products and façade coatings. These ENM's are mainly nanosilver (nano-Ag), nano titanium dioxide (nano-TiO(2)), nano silica (nano-SiO(2)), nano zinc oxide (nano-ZnO), nano alumina (nano-Al(2)O(3)), layered silica (e.g. montmorillonite, Al(2)[(OH)(2)/Si(4)O(10)]nH(2)O), carbon black, and carbon nanotubes (CNT). Knowing full well that innovators have to take decisions today, we have presented some criteria that should be useful in systematically analyzing and interpreting the state of the art on the effects of ENM. For the environment we established the following criteria: (1) the indication for hazardous effects, (2) dissolution in water increases/decreases toxic effects, (3) tendency for agglomeration or sedimentation, (4) fate during waste water treatment, and (5) stability during incineration. For human health the following criteria were defined: (1) acute toxicity, (2) chronic toxicity, (3) impairment of DNA, (4) crossing and damaging of tissue barriers, (5) brain damage and translocation and effects of ENM in the (6) skin, (7) gastrointestinal or (8) respiratory tract. Interestingly, some ENM might affect the environment less severely than they might affect human health, whereas the case for others is vice versa. This is especially true for CNT. The assessment of the environmental risks is highly dependent on the respective product life cycles and on the amounts of ENM produced globally.


Asunto(s)
Contaminantes Ambientales/toxicidad , Nanoestructuras/toxicidad , Textiles/toxicidad , Óxido de Aluminio/toxicidad , Ambiente , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Nanotecnología , Nanotubos de Carbono/toxicidad , Medición de Riesgo , Dióxido de Silicio/toxicidad , Titanio/toxicidad , Óxido de Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA