Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Gene ; 815: 146178, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34995733

RESUMEN

Frailty develops due to multiple factors, such as sarcopenia, chronic pain, and dementia. Go-sha-jinki-Gan (GJG) is a traditional Japanese herbal medicine used for age-related symptoms. We have reported that GJG improved sarcopenia, chronic pain, and central nervous system function through suppression of tumor necrosis factor-alpha (TNF-α) production. In the present study, GJG was found to reduce the production of TNF-α in the soleus muscle of senescence-accelerated mice at 12 weeks and 36 weeks. GJG did not change the differentiation of C2C12 cells with 2% horse serum. GJG significantly decreased the expression of Muscle atrophy F-box protein (MAFbx) induced by TNF-α in C2C12 cells on real-time PCR. TNF-α significantly decreased the expression of PGC-1α and negated the enhancing effect of GJG for the expression of PGC-1α on digital PCR. Examining 20 chemical compounds derived from GJG, cinnamaldehyde from cinnamon bark and Chikusetsusaponin V (CsV) from Achyrantes Root dose-dependently decreased the production of TNF-⍺ in RAW264.7 cells stimulated by LPS. CsV inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB) p65 in RAW264.7 cells. CsV showed low permeability using Caco-2 cells. However, the plasma concentration of CsV was detected from 30 min to 6 h and peaked at 1 h in the CD1 (ICR) mice after a single dose of GJG. In 8-week-old SAMP8 mice fed 4% (w/w) GJG from one week to four weeks, the plasma CsV concentration ranged from 0.0500 to 10.0 ng/mL. The evidence that CsV plays an important role in various anti-aging effects of GJG via suppression of TNF-⍺ expression is presented.


Asunto(s)
Envejecimiento/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Saponinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Medicamentos Herbarios Chinos/química , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Células RAW 264.7 , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saponinas/administración & dosificación , Saponinas/sangre , Solubilidad , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
2.
J Biol Chem ; 293(26): 10333-10343, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29764933

RESUMEN

Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator-responsive elements (PPREs) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of >12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia.


Asunto(s)
Regulación de la Expresión Génica , PPAR alfa/genética , PPAR alfa/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Fructosa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Humanos , Hipolipemiantes/farmacología , Ligandos , Ratas
3.
Biochem Biophys Res Commun ; 495(2): 1992-1997, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29180011

RESUMEN

We recently showed that a 13-kDa protein (p13), the homolog protein of formation of mitochondrial complex V assembly factor 1 in yeast, acts as a potential protective factor in pancreatic islets under diabetes. Here, we aimed to identify known compounds regulating p13 mRNA expression to obtain therapeutic insight into the cellular stress response. A luciferase reporter system was developed using the putative promoter region of the human p13 gene. Overexpression of peroxisome proliferator-activated receptor gamma coactivator 1α, a master player regulating mitochondrial metabolism, increased both reporter activity and p13 expression. Following unbiased screening with 2320 known compounds in HeLa cells, 12 pharmacological agents (including 8 cardiotonics and 2 anthracyclines) that elicited >2-fold changes in p13 mRNA expression were identified. Among them, four cardiac glycosides decreased p13 expression and concomitantly elevated cellular oxidative stress. Additional database analyses showed highest p13 expression in heart, with typically decreased expression in cardiac disease. Accordingly, our results illustrate the usefulness of unbiased compound screening as a method for identifying novel functional roles of unfamiliar genes. Our findings also highlight the importance of p13 in the cellular stress response in heart.


Asunto(s)
Glicósidos Cardíacos/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Glicoproteínas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/fisiología , Mapeo de Interacción de Proteínas/métodos , Genes Reporteros , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA