Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36838719

RESUMEN

Phenolic compounds (PCs) are widespread secondary metabolites with potent biological activity. Their sources are mainly plants from cultivated and natural states, providing valuable protective and health-promoting extracts. The wide biological activity of PCs (antioxidant, anti-inflammatory, antimicrobial, antiatherosclerotic, antidiabetic, antiallergic, prebiotic, antimutagenic) means that new sources of PCs are constantly being sought, as exemplified by extracting these compounds from tissue culture or agricultural by-products. Plant phenols show marked qualitative and quantitative variation not only at different genetic levels (between and within species and clones) but also between different physiological and developmental stages. Assessing genetic and seasonal variations in phenolic content and activity allows for selecting the best time to harvest the plant. Learning about the causes of PCs' variability and putting this knowledge into practice can significantly increase PCs' yields and extract the most valuable compounds. The health-promoting properties resulting from consuming products rich in plant PCs are undeniable, so it is worth promoting high-phenolic products as a regular diet. This paper presents an overview of different sources of PCs for use as potential therapeutic alternatives. Additionally, factors of variation in the phenolic complex at the genome and ontogeny levels, relevant in practical terms and as a basis for further scientific research, are presented.


Asunto(s)
Fenoles , Extractos Vegetales , Fenoles/metabolismo , Plantas/metabolismo , Antioxidantes , Genotipo
2.
Artículo en Inglés | MEDLINE | ID: mdl-35832524

RESUMEN

Fresh fruit and vegetables are highly utilized commodities by health-conscious consumers and represent a prominent segment in the functional and nutritional food sector. However, food processing is causing significant loss of nutritional components, and the generation of waste is creating serious economic and environmental problems. Fruit and vegetables encompass husk, peels, pods, pomace, seeds, and stems, which are usually discarded, despite being known to contain potentially beneficial compounds, such as carotenoids, dietary fibers, enzymes, and polyphenols. The emerging interest in the food industry in the nutritional and biofunctional constituents of polyphenols has prompted the utilization of fruit and vegetable waste for developing enriched and functional foods, with applications in the pharmaceutical industry. Moreover, the utilization of waste for developing diverse and crucial bioactive commodities is a fundamental step in sustainable development. Furthermore, it provides evidence regarding the applicability of fruit and vegetable waste in different food formulations especially bakery, jam, and meat based products.

3.
Plants (Basel) ; 12(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36616219

RESUMEN

Acne is a chronic, common disease that poses a significant therapeutic, psychological and social problem. The etiopathogenesis of this disease is not fully understood. Drugs used in general and external therapy should have anti-seborrhoeic, anticomadogenic, bactericidal, bacteriostatic, and anti-inflammatory properties. Acne treatment is often associated with the long-term use of antibiotics, contributing to the global antibiotic resistance crisis. In order to solve this problem, attention has been paid to essential oils and their terpene components with potent antimicrobial, anti-inflammatory, and antioxidant properties. Research shows that certain essential oils effectively reduce inflammatory acne lesions through mechanisms related to the sebaceous glands, colonization of Cutibacterium acnes, and reactive oxygen species (ROS). An example is tea tree oil (TTO), a more commonly used topical agent for treating acne. TTO has antimicrobial and anti-inflammatory activity. The paper presents the latest scientific information on the activity and potential use of specific essential oils in treating acne. Evidence of antibacterial, anti-inflammatory, and antioxidant activity of several essential oils and their main components was presented, indicating the possibility of using them in the treatment of acne.

4.
Molecules ; 26(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299584

RESUMEN

Currently, the potential utilization of fruits and vegetable waste as a source of micronutrients and antioxidants has increased. The present study, therefore, aimed to determine the antimicrobial and anti-inflammatory activities of Citrus nobilis peel extract. A modified solvent evaporation technique was employed for peel extract preparation. For effective utilization of the natural product, quantitative analysis of phenolic compounds was carried out using liquid chromatography and mass spectroscopy technique. Phenolic and flavonoids were present in high amounts, while ß-carotene and lycopene were present in vestigial amounts. The antimicrobial efficiency of peel extract was evaluated against four bacterial strains including Staphylococcus aureus (MTCC 3160), Klebsiella pneumoniae (MTCC 3384), Pseudomonas aeruginosa (MTCC 2295), and Salmonella typhimurium (MTCC 1254), and one fungal strain Candida albicans (MTCC 183), and zone of inhibition was comparable to the positive control streptomycin and amphotericin B, respectively. The extract of Citrus nobilis peels showed effective anti-inflammatory activity during human red blood cell membrane stabilization (HRBC) and albumin denaturation assay. The extracts also exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity ranging from 53.46 to 81.13%. Therefore, the obtained results suggest that Citrus nobilis peel could be used as an excellent source of polyphenols and transformed into value-added products.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Bacterias/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Citrus/química , Membrana Eritrocítica/metabolismo , Frutas/química , Metanol/química , Extractos Vegetales/farmacología , Antiinfecciosos/química , Antiinflamatorios/química , Antioxidantes/química , Humanos , Extractos Vegetales/química
5.
Nat Prod Commun ; 9(5): 703-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25026727

RESUMEN

The present study investigated changes in the content and chemical composition of the essential oil extracted by hydrodistillation from air-dried Melissa officinalis L. (lemon balm) leaves in the first and second year of plant growth. The lemon balm oil was analysed by GC-MS and GC-FID. The presence of 106 compounds, representing 100% of the oil constituents, was determined in the oil. The predominant components were geranial (45.2% and 45.1%) and neral (32.8% and 33.8%); their proportions in the examined samples of the oil obtained from one- and two-year-old plants were comparable. However, the age of lemon balm plants affected the concentration of other constituents and the proportions of the following compounds were subject to especially high fluctuations: citronellal (8.7% and 0.4%), geraniol (trace amounts and 0.6%), and geranyl acetate (0.5% and 3.0%), as well as, among others, isogeranial, E-caryophyllene, caryophyllene oxide, germacrene D, and carvacrol. The essential oil of two-year-old plants was characterized by a richer chemical composition than the oil from younger plants.


Asunto(s)
Melissa/química , Aceites Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas , Melissa/crecimiento & desarrollo , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA